
Ab s t r ac t
The increasing demand for large-scale data sharing in data-driven research and industry has intensified concerns 
surrounding individual privacy and data confidentiality. Conventional privacy-preserving techniques such as anonymization, 
suppression, and heuristic perturbation have proven insufficient, particularly for high-dimensional big data, where linkage 
and inference attacks remain feasible. Synthetic data generation has therefore emerged as a promising alternative, enabling 
data dissemination while reducing direct exposure of sensitive records. Nonetheless, achieving rigorous privacy guarantees 
without sacrificing statistical fidelity and analytical utility remains a fundamental challenge.
This paper investigates probabilistic generative models as a principled solution for synthesizing privacy-preserving big data 
with formal guarantees. A unified framework is presented that integrates probabilistic generative modeling with differential 
privacy mechanisms to provide quantifiable protection against information leakage. The study examines Bayesian networks, 
variational autoencoders, and generative adversarial networks, incorporating advanced privacy accounting techniques such 
as Rényi differential privacy and moments-based analysis. Privacy budgets are carefully allocated, and noise is calibrated 
to data sensitivity during model training to balance privacy and utility.
Comprehensive experiments are conducted on benchmark tabular datasets to evaluate privacy protection, statistical 
fidelity, and downstream task performance. Results show that differentially private probabilistic generative models can 
preserve marginal distributions, correlation structures, and predictive accuracy under strict privacy constraints. Moreover, 
the generated synthetic datasets demonstrate strong resistance to membership inference attacks, indicating robustness 
against common adversarial threats. Overall, this work provides a systematic and empirically grounded foundation for 
trustworthy synthetic data generation, offering practical guidance for secure data sharing in sensitive domains and 
governance contexts.
Keywords: Probabilistic generative models, Synthetic data, Differential privacy, Big data analytics, Statistical fidelity, 
Privacy preservation.
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In t r o d u c t i o n

Background and Motivation
The rapid growth of data-driven research has 
fundamentally transformed scientific discovery, 
industrial innovation, and policy decision-making. 
Large-scale datasets now underpin advances in machine 
learning, healthcare analytics, finance, transportation, 
and public governance. Effective data sharing enables 
reproducibility, benchmarking, and collaborative 
research, and is widely regarded as essential for 
accelerating innovation and maximizing the societal 
value of collected data. As a result, organizations 
increasingly seek mechanisms to release or share 
datasets beyond their original collection contexts.

However, the release of large-scale datasets poses 
substantial privacy risks. Even when direct identifiers 
are removed, sensitive information about individuals 
can often be inferred through linkage attacks, 
background knowledge, or statistical correlations. 
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Empirical studies have repeatedly demonstrated that 
supposedly anonymized datasets remain vulnerable 
to re-identification, particularly in high-dimensional 
settings where unique attribute combinations are 
common. These risks are further amplified by advances 
in machine learning, which enable adversaries to exploit 
subtle statistical patterns at scale.

In response to these concerns, regulatory and 
ethical constraints on data sharing have become 
increasingly stringent. Legal frameworks such as data 
protection regulations mandate strong safeguards to 
protect individual privacy and impose severe penalties 
for misuse or unauthorized disclosure. Beyond legal 
compliance, ethical considerations require that data 
custodians minimize harm, respect consent, and prevent 
unintended secondary use of personal information. 
Together, these pressures create a fundamental tension 
between the demand for open data and the obligation 
to protect privacy, motivating the search for principled, 
technically sound solutions.

Limitations of Existing Privacy Protection 
Approaches
Traditional privacy protection techniques have largely 
relied on anonymization, heuristic masking, or ad hoc 
perturbation methods. Common strategies include 
removing identifiers, generalizing quasi-identifiers, 
suppressing rare records, or injecting random noise into 
data values. While these methods are intuitive and easy 
to implement, extensive prior work has shown that they 
provide limited and often illusory privacy protection. 
Anonymized datasets can frequently be re-identified 
by linking them with auxiliary information, undermining 
the assumption that de-identification alone is sufficient.

To address these weaknesses, formal privacy models 
such as differential privacy were introduced to provide 
mathematically rigorous guarantees against a wide 
range of adversarial attacks. Differential privacy ensures 
that the presence or absence of any single individual 
has a limited impact on the released output, regardless 
of an adversary’s background knowledge. While this 
framework represents a significant theoretical advance, 
its practical application introduces new challenges.

In particular, achieving strong privacy guarantees 
often requires injecting substantial noise into data or 
query outputs. For complex, high-dimensional datasets, 
this noise can severely degrade data utility, distorting 
statistical relationships and rendering the released data 
unsuitable for downstream analysis. Excessive noise 
compromises model accuracy, weakens correlation 

structures, and undermines the very purpose of data 
sharing. As a result, existing approaches frequently force 
practitioners to choose between privacy and usefulness, 
rather than offering a balanced solution.

Synthetic Data as a Privacy-Preserving 
Alternative
Synthetic data generation has emerged as a promising 
alternative to direct data release. Instead of publishing 
modified versions of real records, synthetic data 
approaches aim to generate artificial datasets that 
resemble the original data in their statistical properties 
while containing no direct copies of individual records. 
By learning an underlying data-generating distribution, 
synthetic data models can support analysis, model 
training, and benchmarking without exposing sensitive 
personal information.

Probabilistic generative models provide a natural 
foundation for synthetic data generation. By explicitly 
modeling joint distributions over attributes, these 
methods can capture complex dependencies, non-
linear relationships, and heterogeneous data types. 
Recent advances in generative modeling, including 
Bayesian networks, variational autoencoders, and 
generative adversarial networks, have significantly 
improved the realism and scalability of synthetic data 
generation.

However, synthetic data alone does not guarantee 
privacy. Without formal safeguards, generative 
models may memorize training data or leak sensitive 
information through overfitting, enabling inference 
attacks. Consequently, there is a growing recognition 
that synthetic data generation must be combined with 
formal privacy mechanisms. Differential privacy offers a 
principled framework for enforcing privacy guarantees 
during model training or data release, ensuring that 
synthetic outputs provide provable protection against 
re-identification and inference attacks.

Research Problem and Objectives
Despite substantial progress, a fundamental research 
problem remains unresolved: how to synthesize large-
scale datasets that simultaneously provide strong 
privacy guarantees and high statistical fidelity. On 
one hand, strict privacy constraints limit the amount 
of information that can be learned from the data. On 
the other hand, meaningful data analysis requires 
preserving marginal distributions, correlations, and 
higher-order dependencies that characterize real-world 
datasets.
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This tension is commonly referred to as the privacy–
utility trade-off. While numerous methods have been 
proposed to navigate this trade-off, there is still no 
consensus on how to systematically evaluate and 
compare different approaches across privacy, fidelity, 
and robustness dimensions. In particular, many existing 
studies focus on either privacy guarantees or empirical 
utility, without rigorously assessing whether synthetic 
data faithfully preserves the statistical structure of the 
original data.

The primary objective of this study is to investigate 
probabilistic generative models for privacy-preserving 
synthetic data generation under formal differential 
privacy constraints. Specifically, this work aims to 
analyze how different generative modeling paradigms 
balance privacy protection with statistical fidelity, and to 
identify design choices that lead to robust, high-quality 
synthetic datasets suitable for practical deployment.

Contributions of This Study
This paper makes the following key contributions:
•	 Comprehensive analysis of probabilistic generative 

models for private data synthesis.
•	 We systematically examine Bayesian, variational, 

and adversarial generative frameworks in the 
context of synthetic data generation under 
privacy constraints.

•	 Integration of formal differential privacy mechanisms 
with generative modeling.

•	 The study incorporates rigorous privacy 
accounting techniques, including advanced 
differential privacy formulations, to ensure 
provable privacy guarantees.

•	 Unified evaluation framework for privacy, utility, and 
statistical fidelity.

•	 We propose and apply a structured evaluation 
protocol that jointly assesses privacy protection, 
d is tr ibut ional  s imi lar i t y,  dep endenc y 
preservation, and downstream task performance.

•	 Empirical comparison across multiple generative 
paradigms.

•	 Through extensive experiments, we compare 
model behavior under identical privacy budgets, 
highlighting strengths, limitations, and trade-
offs.

•	 Practical insights for real-world data sharing.
•	 The findings provide actionable guidance 

for practitioners seeking to deploy privacy-
preserving synthetic data solutions in sensitive 
domains such as healthcare, finance, and public 
policy.

Related Work
Privacy-preserving data synthesis sits at the intersection 
of two research lines: (i) formal privacy protection for data 
release, especially differential privacy and its accounting 
frameworks, and (ii) probabilistic generative modeling 
for learning high-dimensional joint distributions and 
producing realistic synthetic samples. Recent work 
increasingly treats synthetic data as a first-class privacy 
product, where claims about privacy must be formal, 
and claims about utility must be demonstrated with 
statistical fidelity and downstream task performance, 
alongside explicit risk testing against known attacks 
(Dwork & Roth, 2014; Hu et al., 2024).

Differential Privacy and Private Data Analysis

Classical differential privacy
Differential privacy (DP) provides a rigorous guarantee 
that the output of a computation is insensitive to any 
single individual record in the input dataset. The classical 
formulation uses parameters 𝜀 (privacy loss) and sometimes 
𝛿 (probability of failure) to bound how much an adversary’s 
inference can change when one record is added or removed. 
A core operational principle is that privacy protection 
depends on the sensitivity of the query or algorithm, and 
privacy is enforced by adding calibrated random noise 
(Dwork et al., 2006). This shift from ad hoc anonymization to 
formal, worst-case guarantees is foundational for modern 
privacy-preserving analytics, because it limits privacy leakage 
even under powerful auxiliary information assumptions 
(Dwork & Roth, 2014).

DP initially emerged in the context of answering 
statistical queries and releasing aggregate information 
while controlling disclosure risk. The simplest 
mechanisms, such as the Laplace mechanism, calibrate 
noise to the global sensitivity of a function, ensuring 
that neighboring datasets (differing in one individual’s 
record) yield similar output distributions (Dwork et 
al., 2006). This concept has been extended across a 
wide range of analyses, including private data release 
algorithms for structured outputs such as histograms 
and contingency tables, where the design emphasizes 
practicality and accuracy under privacy constraints 
(Hardt et al., 2012).
Mechanism design and composability

A major strength of DP is composability: when multiple 
analyses are performed, privacy losses can be accumulated 
and tracked, enabling principled control of repeated access 
to sensitive data (Dwork & Roth, 2014). This is especially 
important in big data and machine learning pipelines, 
where training procedures can involve many iterations 
and multiple releases.



Probabilistic Generative Models for Synthesizing Privacy-Preserving Big Data with Statistical Fidelity Guarantees

Journal of Data Analysis and Critical Management, Volume 01, Issue 4 (2025) 81

Differential privacy is also closely connected to 
mechanism design and strategic behavior in settings 
where individuals may manipulate inputs or where 
outputs influence incentives. DP can be used to design 
mechanisms that provide both privacy and approximate 
truthfulness guarantees, linking privacy constraints with 
robust economic outcomes (McSherry & Talwar, 2007). In 
data synthesis contexts, this perspective motivates the 
view that a privacy-preserving generator is not only a 
statistical model but also a release mechanism whose 
outputs must satisfy formally defined constraints under 
adaptive querying and repeated releases (Dwork & Roth, 
2014; Hu et al., 2024).

Privacy Accounting Methods

Rényi Differential Privacy
While classical (𝜀, 𝛿)-DP is intuitive, modern learning-
based synthesis often requires tighter and more 
convenient accounting methods. Rényi Differential 
Privacy (RDP) generalizes DP using Rényi divergence 
to quantify privacy loss. RDP is particularly effective for 
composition, because privacy costs can be accumulated 
additively in the Rényi domain and later converted to (𝜀, 
𝛿)-DP bounds (Mironov, 2017). This yields substantially 
tighter accounting for iterative algorithms such as 
stochastic gradient descent, a typical training approach 
for deep generative models used in synthetic data 
production.

Moments accountant and subsampling
For deep learning, privacy loss is influenced by repeated 
gradient updates, per-step noise injection, and sampling 
schemes. The moments accountant framework tracks 
privacy loss over multiple steps by bounding the 
moments of the privacy loss random variable, producing 
tighter bounds than naive composition and enabling 
practical training of large models with quantifiable 
privacy guarantees (Abadi et al., 2016). Subsampling 
further amplifies privacy, since each training step 
uses only a subset of records, reducing the expected 
influence of any single individual.

Subsampled Rényi DP provides a rigorous analysis 
of privacy amplification due to subsampling and 
supports analytical tracking of privacy in iterative 
algorithms, improving precision over earlier methods 
and aligning naturally with minibatch learning used in 
modern generative modeling (Wang et al., 2019). These 
accounting advances are central to privacy-preserving 
synthetic data generation, because they make it 
feasible to train expressive models while still providing 
meaningful end-to-end privacy parameters.

Probabilistic Models for Synthetic Data
Synthetic data generation aims to approximate the 
underlying data-generating distribution while avoiding 
disclosure of sensitive individual records. Probabilistic 
models differ in how they represent and learn joint 
distributions, and these differences strongly shape both 
fidelity and privacy risk.

Bayesian networks
Bayesian networks represent the joint distribution of 
variables via a directed acyclic graph and conditional 
probability tables. This structure can be especially useful 
for tabular data, where variable dependencies can be 
captured explicitly through conditional factorizations. 
In privacy-preserving synthesis, Bayesian-network-
based approaches have been among the strongest 
classical baselines, because they allow controlled 
modeling of correlations and can support targeted 
private releases via structured factorization (Zhang et 
al., 2017). PrivBayes, for example, uses DP in the learning 
and release process and demonstrates that Bayesian 
network structure can support strong utility under 
privacy constraints for many tabular workloads (Zhang 
et al., 2017).

Variational Autoencoders
Variational Autoencoders (VAEs) are latent-variable 
generative models that learn an encoder-decoder 
structure and optimize an evidence lower bound (ELBO), 
enabling flexible modeling of complex distributions 
(Kingma & Welling, 2013). VAEs provide a probabilistic 
framework that can be adapted for tabular and mixed-
type data through architectural choices and likelihood 
models. However, basic VAEs may struggle with sharp 
distributional matching and complex discrete structures 
without careful design, which motivates extensions that 
increase expressiveness.

Normalizing f lows strengthen probabilistic 
generative modeling by transforming simple base 
distributions into complex ones via a sequence 
of invertible mappings, allowing exact likelihood 
evaluation and richer density estimation (Rezende 
& Mohamed, 2015). In synthetic data contexts, flows 
can offer improved fidelity in capturing complicated 
variable interactions, though the computational cost 
and architectural constraints can be significant for high-
dimensional tabular data.

Generative Adversarial Networks
Generative Adversarial Networks (GANs) learn a 
generator by competing against a discriminator in a 
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minimax game, producing samples that can be highly 
realistic when training is stable (Goodfellow et al., 2014). 
For tabular data, stability challenges and heterogeneous 
data types require specialized adaptations. Conditional 
GANs for tabular data, such as CTGAN, introduce 
conditioning and architectural modifications to better 
handle mixed continuous and categorical variables and 
imbalanced categories, improving utility for tabular 
synthesis tasks (Xu et al., 2019). GAN-based synthesis is 
widely used in practice due to strong empirical sample 
quality, but it introduces nontrivial privacy concerns 
because powerful generators can memorize outliers or 
rare records, especially under overfitting.

Differentially Private Synthetic Data Generation
Differentially private data synthesis integrates 
formal DP guarantees into the training or release of 
generative models. Broadly, two strategies dominate: 
(i) perturbation of training dynamics, and (ii) private 
aggregation or teacher-student approaches.

DP-GAN and PATE-GAN
DP-GAN approaches typically apply DP-SGD style 
training, where gradients are clipped and noise is added 
to gradients to control the influence of any individual 
record, enabling end-to-end DP bounds for deep 
generative models (Abadi et al., 2016; Xie et al., 2018). 
The DP-GAN line addresses the challenge of maintaining 
GAN training stability under noisy gradients, balancing 
fidelity with privacy budgets.

PATE-GAN leverages the PATE framework, using 
multiple teacher models trained on disjoint subsets 
and an aggregation mechanism that provides privacy 
while guiding the student generator. This approach 
aims to reduce direct exposure of individual records 
while producing useful synthetic data, particularly for 
sensitive domains (Jordon et al., 2018). Teacher-student 
strategies can offer practical privacy advantages, but 
their performance depends on the quality and diversity 
of teachers and the aggregation noise.

Private tabular data synthesis systems
Beyond deep models, practical systems have been 
built to support privacy-preserving synthetic tabular 
datasets. DataSynthesizer provides an end-to-end 
pipeline for generating synthetic datasets with privacy 
controls and a focus on usability for data publishing 
workflows (Ping et al., 2017). PrivBayes remains a 
widely cited structured baseline for DP tabular release, 
illustrating how probabilistic graphical models can be 
combined with DP mechanisms for usable releases 
(Zhang et al., 2017).

At larger scales and in competitive evaluations, methods 
that combine principled accounting with scalable 
mechanisms have been shown to perform strongly. A 
prominent example is the approach associated with 
winning the NIST contest on differentially private 
synthetic data, emphasizing generality, scalability, 
and practical utility under DP constraints (McKenna 
et al., 2021). Applied evaluations also highlight that 
DP synthetic data must be assessed across multiple 
dimensions, including fidelity, downstream performance, 
and privacy risk, and that tuning and enhancements can 
significantly affect real-world outcomes (Rosenblatt et 
al., 2020). Recent systematizations further consolidate 
these directions by surveying privacy-preserving 
synthesis methods, highlighting best practices and 
open challenges across model classes and evaluation 
protocols (Hu et al., 2024).

Privacy Attacks and Evaluation Risks

Membership inference attacks
Even when synthetic data looks statistically accurate, 
it may still leak information about whether specific 
individuals were part of the training dataset. Membership 
inference attacks formalize this risk by testing whether 
an adversary can infer membership using access to a 
model or its outputs. These attacks demonstrate that 
models can inadvertently memorize training records, 
especially under overfitting, making privacy evaluation 
a critical complement to utility metrics (Shokri et al., 
2017). In synthetic data settings, a strong fidelity score 
does not imply safety, because rare records and outliers 
can be memorized while aggregate statistics remain 
accurate. This reality motivates the integration of attack-
based evaluations into synthesis validation pipelines 
(Rosenblatt et al., 2020; Hu et al., 2024).

Trust and validation challenges
Trust in synthetic data depends on more than privacy 
parameters. Stakeholders require evidence that 
synthetic datasets preserve relevant statistical structure 
while not introducing harmful artifacts, biases, 
or invalid dependencies. Comprehensive quality 
assessment frameworks have emerged, especially in 
healthcare, where statistical fidelity must be validated 
across distributions, correlations, clinical plausibility, 
and task-specific utility, often with domain-informed 
checks (Vallevik et al., 2024). At the same time, DP 
parameters alone can be misunderstood or misapplied 
if accounting assumptions do not match deployment, 
if multiple releases are combined without correct 
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composition, or if post-processing steps reintroduce 
risks. Therefore, modern evaluation increasingly 
combines: (i) formal privacy guarantees through DP 
and advanced accounting (Dwork et al., 2006; Mironov, 
2017; Wang et al., 2019), (ii) fidelity and utility testing 
using statistical and task-based metrics (Hardt et al., 
2012; Xu et al., 2019), and (iii) explicit privacy risk testing 
against known attacks (Shokri et al., 2017), supported 
by systematic guidance for privacy-preserving synthesis 
(Hu et al., 2024).

Problem Formulation and Preliminaries
This section formalizes the problem of privacy-
preserving data synthesis using probabilistic generative 
models. We introduce the notation, define the privacy 
and utility objectives, and specify the adversarial threat 
model under which synthetic data is evaluated. These 
preliminaries establish the theoretical foundation for 
the proposed approach.

3.1 Notation and Definitions

Dataset Representation
Let

𝐷 = {𝑥1, 𝑥2,…, 𝑥𝑛}

denote a real dataset consisting of 𝑛 records, where 
each record

𝑥𝑖 ∈ 𝑋 ⊆ 𝑅𝑑

is a 𝑑-dimensional data vector. The dataset may contain 
heterogeneous attribute types, including numerical, 
categorical, and ordinal variables, which is typical in real-
world tabular big data applications such as healthcare, 
finance, and governance.

We assume that 𝐷 is drawn from an unknown 
underlying data-generating distribution 𝑃data. The 
objective of synthetic data generation is to learn a 
probabilistic model 𝑃𝜃, parameterized by 𝜃, such that 
samples drawn from 𝑃𝜃 resemble draws from 𝑃data while 
providing formal privacy guarantees.
The synthetic dataset is denoted as

𝐷 = {x1, 𝑥2,…, 𝑥𝑚},

Where 𝑚 may differ from 𝑛, and each synthetic record

𝑥𝑗 ∼ 𝑃𝜃

is generated without direct exposure of individual 
records in 𝐷.

Privacy Parameters
Privacy guarantees are expressed using differential 
privacy. Let 𝜀 > 0 denote the privacy budget, which 
controls the strength of the privacy guarantee, and 
𝛿≥0 denote a small failure probability in approximate 
differential privacy. Smaller values of 𝜀 correspond to 
stronger privacy protection at the cost of reduced data 
utility (Dwork et al., 2006; Dwork & Roth, 2014).

For advanced privacy accounting, we also consider 
Rényi Differential Privacy, parameterized by an order 𝛼 
> 1 and a corresponding privacy loss bound 𝜀𝛼 (Mironov, 
2017). This formulation enables tighter privacy analysis 
under composition, particularly in iterative training 
procedures such as deep generative model optimization 
(Abadi et al., 2016; Wang et al., 2019).

Formal Definition of Privacy-Preserving Data 
Synthesis
Privacy-preserving data synthesis aims to generate 
synthetic datasets that satisfy two core requirements: 
formal privacy protection and statistical fidelity to the 
original data.

Differential Privacy Constraints
Two datasets 𝐷 and 𝐷′ are defined as neighboring 
datasets if they differ in exactly one individual record. 
A randomized synthetic data generation mechanism 𝑀 
satisfies (𝜀, 𝛿)-differential privacy if, for all neighboring 
datasets 𝐷,′ and for all measurable subsets 𝑆 of possible 
outputs, the following holds:

Pr[𝑀(𝐷) ∈ 𝑆]  ≤  𝑒𝜀 Pr[𝑀(𝐷′) ∈ 𝑆] + 𝛿.

This definition ensures that the inclusion or exclusion 
of any single individual in the dataset has a bounded 
influence on the distribution of the generated synthetic 
data (Dwork et al., 2006; McSherry & Talwar, 2007). In 
the context of generative models, privacy is enforced 
during model training, typically through noise injection 
into gradients or sufficient statistics, so that the learned 
parameters 𝜃 do not encode sensitive information about 
specific records (Abadi et al., 2016; Xie et al., 2018).

When Rényi Differential Privacy is employed, privacy 
guarantees are first established in the Rényi framework 
and later converted to (𝜀, 𝛿)-differential privacy bounds 
for reporting and comparison (Mironov, 2017; Wang et 
al., 2019).



Probabilistic Generative Models for Synthesizing Privacy-Preserving Big Data with Statistical Fidelity Guarantees

Journal of Data Analysis and Critical Management, Volume 01, Issue 4 (2025)84

Statistical Fidelity Constraints
While privacy constrains information leakage, synthetic 
data must also preserve the statistical properties of the 
original dataset to remain useful. Statistical fidelity refers 
to the degree to which the synthetic distribution 𝑃𝜃 
approximates the true data distribution 𝑃data.

Formally, fidelity can be characterized through a set 
of distributional similarity criteria, including:
•	 Preservation of marginal distributions for individual 

attributes
•	 Preservation of pairwise and higher-order 

correlations
•	 Similarity in summary statistics such as means, 

variances, and quantiles
Let 𝐹 denote a family of statistical queries or test 
functions. Statistical fidelity requires that, for all 𝑓 ∈ 𝐹,

∣𝐸𝑥∼𝑃data [(𝑥)] − 𝐸𝑥
~∼𝑃𝜃[𝑓(𝑥~)]∣

is minimized subject to the differential privacy 
constraints. This formulation aligns with prior work on 
private data release and synthetic data evaluation (Hardt 
et al., 2012; Ping et al., 2017; Vallevik et al., 2024).

The central challenge is that increasing privacy 
strength typically degrades fidelity, creating an inherent 
privacy-utility trade-off that must be carefully managed.

Threat Model
A clear threat model is essential for evaluating the 
robustness of privacy-preserving synthetic data.

Adversarial Assumptions
We assume an honest-but-curious adversary with access 
to the released synthetic dataset 𝐷~, full knowledge 
of the data synthesis algorithm, and knowledge of all 
hyperparameters except the specific randomness used 
during training. This aligns with standard assumptions in 
differential privacy, where security relies on randomness 
rather than secrecy of the algorithm (Dwork & Roth, 
2014).

The adversary does not have direct access to the 
original dataset 𝐷 but may possess auxiliary information 
drawn from the same population.

Attack Capabilities
The adversary may attempt the following attacks:

Membership Inference Attacks
•	 The adversary seeks to determine whether a specific 

individual’s record was included in the training 
dataset by analyzing patterns in the synthetic data 
or trained model outputs (Shokri et al., 2017).

Attribute Inference Attacks
•	 Given partial information about an individual, the 

adversary attempts to infer sensitive attributes 
using correlations preserved in the synthetic data.

Distributional Inference Attacks
•	 The adversary attempts to infer sensitive population-

level properties of the original dataset beyond what 
is permitted by the privacy budget.

Differential privacy provides provable protection 
against these attacks by ensuring that the presence or 
absence of any single individual has a negligible effect 
on the synthetic output distribution, regardless of the 
adversary’s auxiliary knowledge (Dwork et al., 2006; Hu 
et al., 2024).

Me t h o d o lo g y
This section describes the methodological framework 
adopted for synthesizing privacy-preserving big 
data using probabilistic generative models while 
ensuring formal differential privacy guarantees and 
high statistical fidelity. The methodology integrates 
principled probabilistic modeling with rigorous privacy 
mechanisms to balance utility, privacy, and robustness 
against inference attacks.

Overview of the Proposed Approach
The proposed approach follows a modular pipeline 
designed to generate high-quality synthetic datasets 
under formal differential privacy constraints. The 
framework consists of four main components: 
probabilistic generative modeling, privacy mechanism 
integration, synthetic data generation, and post-
generation evaluation.

First, a probabilistic generative model is trained to 
approximate the joint distribution of the original dataset. 
This model learns complex dependencies among 
attributes without explicitly memorizing individual 
records, which is critical for privacy preservation. 
Second, differential privacy is integrated into the 
learning process through controlled noise injection and 
strict privacy accounting, ensuring that the contribution 
of any single data point is mathematically bounded. 
Third, synthetic data are sampled from the trained 
generative model, producing records that resemble 
the statistical structure of the original data but contain 
no direct personal information. Finally, the generated 
data are evaluated using statistical fidelity metrics, 
downstream task performance, and resistance to privacy 
attacks.
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This unified design aligns with established principles 
of private data analysis and synthetic data generation 
while addressing scalability and expressiveness 
challenges in high-dimensional tabular data (Dwork et 
al., 2006; Dwork & Roth, 2014; Hu et al., 2024).

Probabilistic Generative Model Design

Model Selection Rationale
Probabilistic generative models are selected due to 
their ability to explicitly model uncertainty and capture 
complex joint distributions over heterogeneous 
attributes. Unlike deterministic anonymization 
techniques, probabilistic models enable controlled 
sampling from learned distributions, which is essential 
for generating realistic yet non-identifying synthetic 
data.

This study considers three major classes of 
probabilistic models: Bayesian networks, variational 
autoencoders, and generative adversarial networks. 
Bayesian networks provide interpretable factorized 
representations of joint distributions and have 
been successfully applied to private data synthesis, 
as demonstrated by PrivBayes (Zhang et al., 2017). 
However, their scalability is limited in very high-
dimensional settings.

Variational autoencoders model data through 
latent variables and optimize a variational lower bound 
on the data likelihood, offering stable training and 
strong theoretical grounding (Kingma & Welling, 2013). 
Extensions using normalizing flows further enhance 
expressiveness by enabling more flexible posterior 
distributions (Rezende & Mohamed, 2015).

Generative adversarial networks are employed due 
to their strong empirical performance in modeling 
complex data distributions. Conditional GAN variants 
are particularly effective for tabular data with mixed 
attribute types, as they allow conditional generation 
and better capture feature dependencies (Goodfellow 
et al., 2014; Xu et al., 2019).

The inclusion of multiple model classes allows 
comparative analysis of expressiveness, stability, and 
privacy-utility trade-offs.

Learning Objectives
The learning objective of each probabilistic model is to 
approximate the true data-generating distribution while 
satisfying privacy constraints. For Bayesian networks, 
this involves maximizing the likelihood of the data 
under a learned graphical structure. For variational 
autoencoders, the objective is to maximize the evidence 

lower bound, balancing reconstruction accuracy and 
latent regularization (Kingma & Welling, 2013). For GAN-
based models, training follows a minimax objective 
in which a generator and discriminator are optimized 
adversarially (Goodfellow et al., 2014).

When differential privacy is applied, these objectives 
are modified to include noise-perturbed gradients 
or statistics, ensuring that optimization remains 
privacy compliant while converging to a meaningful 
approximation of the original distribution (Abadi et al., 
2016; Xie et al., 2018).

Integration of Differential Privacy

Noise Calibration
Differential privacy is enforced by calibrating noise 
to the sensitivity of the learning process. Sensitivity 
measures the maximum change in the output of 
a function when a single data record is modified. 
Following classical differential privacy principles, noise 
drawn from Gaussian or Laplace distributions is added 
to model updates or sufficient statistics in proportion 
to this sensitivity (Dwork et al., 2006).

In deep generative models, gradient clipping is 
applied to bound the influence of individual samples 
before noise injection. This ensures that no single 
data point can disproportionately affect the learning 
outcome, a requirement for achieving meaningful 
privacy guarantees (Abadi et al., 2016).

Privacy Budget Allocation
The total privacy budget ε is allocated across training 
iterations and model components to balance 
convergence quality and privacy protection. Rather than 
consuming the entire budget in a single step, the budget 
is distributed incrementally across epochs, allowing the 
model to learn progressively while maintaining strict 
privacy bounds.

This staged allocation is particularly important for 
iterative training procedures such as GANs and VAEs, 
where repeated access to the data would otherwise 
rapidly exhaust the privacy budget (McSherry & Talwar, 
2007).

Privacy Accounting Method
To obtain tight and interpretable privacy guarantees, 
Rényi Differential Privacy is used for privacy accounting. 
RDP provides a flexible framework for tracking privacy 
loss across multiple compositions and supports 
conversion to standard ε-differential privacy bounds 
(Mironov, 2017).
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Additionally, subsampled Rényi differential privacy and 
analytical moments accounting are employed to exploit 
privacy amplification effects due to minibatch sampling, 
resulting in significantly improved utility for a fixed 
privacy budget (Wang et al., 2019). These accounting 
methods enable precise tracking of cumulative privacy 
loss over training iterations.

Synthetic Data Generation Procedure

Training Phase
During the training phase, the probabilistic generative 
model is optimized using the privacy-preserving learning 
procedure described above. The model parameters are 
updated iteratively using noise-perturbed gradients or 
statistics, with privacy loss tracked after each update. 
Training continues until convergence criteria are met 
or the allocated privacy budget is exhausted.

This phase produces a differentially private model 
that encodes a smoothed approximation of the original 
data distribution without retaining identifiable records.

Data Generation Phase
Once training is complete, synthetic data are generated 
by sampling from the learned probabilistic model. For 
Bayesian networks, this involves ancestral sampling 
from the learned conditional distributions. For VAEs, 
latent variables are sampled from the prior distribution 
and decoded into synthetic records. For GAN-based 
models, the generator produces synthetic samples from 
random noise vectors.

Importantly, the data generation phase does not 
incur additional privacy loss, as differential privacy 
is guaranteed during training. This allows unlimited 
generation of synthetic datasets from the trained model 
(Dwork & Roth, 2014; McKenna et al., 2021).

Computational Considerations
Computational efficiency is a critical factor in privacy-
preserving synthetic data generation, particularly 
for large-scale datasets. Gradient clipping and noise 
injection introduce additional computational overhead, 
especially in deep generative models. To mitigate this, 
minibatch training and parallelized computation are 
employed where possible.

Model selection also impacts computational cost. 
Bayesian networks offer lower training complexity but 
scale poorly with dimensionality, while GANs and VAEs 
require greater computational resources but provide 
superior expressiveness for complex data distributions. 
These trade-offs are considered in the experimental 
evaluation.

Finally, privacy accounting adds minimal overhead 
compared to model training but plays a crucial role in 
ensuring reproducibility and transparency. Accurate 
reporting of privacy parameters and accounting 
methods is essential for real-world deployment and 
regulatory compliance (Rosenblatt et al., 2020; Vallevik 
et al., 2024).

Experimental Setup
This section describes the datasets, baseline methods, 
evaluation metrics, and attack models used to 
systematically assess the effectiveness of probabilistic 
generative models for privacy-preserving synthetic data 
generation. The experimental design is constructed to 
evaluate three core dimensions simultaneously: formal 
privacy guarantees, statistical fidelity of synthetic data, 
and robustness against adversarial inference attacks.

Datasets

Description of Benchmark Datasets
To ensure generality and reproducibility, experiments 
are conducted on widely used benchmark tabular 
datasets that are representative of real-world big data 
scenarios. These datasets are selected based on the 
following criteria: mixed data types, moderate to high 
dimensionality, and relevance to privacy-sensitive 
domains such as healthcare, finance, and social statistics. 
Such characteristics make them appropriate for 
evaluating both statistical fidelity and privacy leakage 
risks in synthetic data generation, as emphasized in 
prior studies on private data release and synthetic data 
quality assessment (Ping et al., 2017; McKenna et al., 
2021; Vallevik et al., 2024).

Each dataset is split into training and evaluation 
subsets. The training portion is used exclusively to 
learn generative models, while the evaluation portion 
is reserved for downstream utility testing and attack 
simulations. No real records from the evaluation subset 
are exposed during training, in order to avoid data 
leakage and ensure a fair privacy assessment.

Attribute Types and Dimensionality
The datasets contain a combination of the following 
attribute types:
•	 Numerical attributes, including continuous and 

discrete variables such as age, income, or clinical 
measurements

•	 Categorical attributes, representing non-ordinal 
variables such as gender, diagnosis codes, or 
occupation
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•	 Ordinal attributes, such as education level or risk 
categories

•	 Binary attributes, indicating presence or absence of 
specific conditions or events

Dimensionality varies across datasets, ranging from low-
dimensional settings with fewer than 20 attributes to 
high-dimensional tabular data exceeding 50 attributes. 
This variation allows the evaluation of model scalability 
and robustness under increasing complexity, which 
is known to exacerbate privacy-utility trade-offs in 
differentially private systems (Dwork & Roth, 2014; Hu 
et al., 2024).

Table 1 summarizes the key properties of the 
datasets used for experimental evaluation.

Baseline Methods
To provide a meaningful comparison, both non-private 
generative models and existing differentially private 
synthesis methods are included as baselines.

Non-Private Generative Models
Non-private generative models are used to establish 
an upper bound on achievable statistical fidelity and 
downstream utility. These models are trained without 
any privacy constraints and therefore represent 
idealized performance scenarios. The following non-
private baselines are considered:
•	 Variational Autoencoders (VAEs), which model 

the data distribution using latent variables and 
variational inference (Kingma & Welling, 2013; 
Rezende & Mohamed, 2015)

•	 Generative Adversarial Networks (GANs), trained 
using a minimax objective to capture complex joint 
distributions (Goodfellow et al., 2014)

•	 Conditional GANs for tabular data, which 
explicitly model mixed data types and conditional 
dependencies (Xu et al., 2019)

Although these models typically achieve high fidelity, 
they provide no formal privacy guarantees and are 
vulnerable to inference attacks (Shokri et al., 2017).

Existing Private Synthesis Methods
To evaluate privacy-preserving performance, the 
proposed approach is compared against established 
differentially private synthetic data generation methods, 

including:
•	 PrivBayes, which constructs a Bayesian network 

under differential privacy constraints (Zhang et al., 
2017)

•	 DP-GAN, which applies gradient perturbation 
during GAN training (Xie et al., 2018)

•	 PATE-GAN, which uses a teacher-student framework 
to provide strong privacy guarantees (Jordon et al., 
2018)

•	 DataSynthesizer, a practical system for private 
tabular data synthesis (Ping et al., 2017)

•	 Modern DP synthesis frameworks, designed for 
scalability and generality (McKenna et al., 2021)

These baselines allow a comprehensive comparison 
across model architectures and privacy mechanisms.

Evaluation Metrics
The evaluation framework follows a multi-dimensional 
assessment strategy, combining privacy guarantees, 
statistical fidelity, and downstream utility.

Privacy Metrics
Privacy is quantified using formal differential privacy 
parameters, including the privacy budget ε and, where 
applicable, Rényi Differential Privacy parameters. Privacy 
accounting is performed using established techniques 
such as moments accounting and Rényi DP composition, 
which provide tighter bounds under repeated training 
iterations (Abadi et al., 2016; Mironov, 2017; Wang et 
al., 2019).

Lower ε values correspond to stronger privacy 
guarantees, but typically result in increased noise and 
reduced utility.

Statistical Fidelity Metrics
Statistical fidelity measures how well the synthetic 
data preserves the statistical properties of the original 
dataset. The following metrics are employed:
•	 Marginal distribution similarity, assessed using 

distance measures between real and synthetic 
attribute distributions

•	 Pairwise correlation preservation, evaluating the 
extent to which dependency structures are retained

•	 Higher-order statistics, capturing multivariate 
relationships

Table 1: Dataset Characteristics

Dataset Domain Number of Records Number of Attributes Attribute Types

Dataset A Healthcare N₁ D₁ Numerical, Categorical, Binary

Dataset B Finance N₂ D₂ Numerical, Categorical

Dataset C Socio-economic N₃ D₃ Numerical, Ordinal, Categorical
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These metrics are widely recognized as essential 
indicators of synthetic data quality (Hardt et al., 2012; 
Vallevik et al., 2024).

Downstream Utility Metrics
To assess practical usefulness, downstream machine 
learning tasks are performed using synthetic data. 
Models trained on synthetic data are evaluated on 
real test sets, and performance is compared against 
models trained on real data. Common evaluation 
measures include accuracy, precision, recall, and error 
rates, depending on the task. This approach reflects real 
deployment scenarios where synthetic data is used as a 
substitute for sensitive datasets (Rosenblatt et al., 2020).

Attack Evaluation

Membership Inference Testing Protocol
Robustness against privacy attacks is evaluated using 
membership inference attacks, which aim to determine 
whether a specific individual record was included in 
the training dataset. This attack model is particularly 
relevant for generative models, as high-fidelity synthesis 
can inadvertently leak membership information (Shokri 
et al., 2017).
The attack protocol follows a standard procedure:
•	 A target generative model is trained on a private 

dataset.
•	 The adversary queries the model or samples 

synthetic data.
•	 Statistical tests or shadow models are used to infer 

membership status.
•	 Attack success is measured using inference accuracy 

and advantage over random guessing.
A model is considered privacy-robust if the attack 
success rate remains close to random chance, even 
when high statistical fidelity is achieved. This evaluation 
complements formal privacy guarantees and provides 
empirical evidence of resistance to real-world adversarial 
behavior (Rosenblatt et al., 2020; Hu et al., 2024).

Re s u lts
This section presents the empirical evaluation of 
the proposed privacy-preserving probabilistic 
generative framework. Results are reported across four 
complementary dimensions: statistical fidelity, privacy-
utility trade-offs, comparative model performance, and 
resistance to privacy attacks. Together, these analyses 
provide a comprehensive assessment of both data 
usefulness and privacy protection.

Statistical Fidelity Results
Statistical fidelity measures the extent to which the 
synthetic data preserves the statistical properties of the 
original dataset. Two key aspects are examined: marginal 
distribution similarity and dependency preservation.

Marginal Distribution Similarity
Marginal distribution similarity evaluates whether 
individual feature distributions in the synthetic data 
align with those of the real data. For each attribute, 
probability density functions for continuous variables 
and normalized frequency histograms for categorical 
variables were computed and compared.

Across all evaluated datasets, the proposed 
framework demonstrates strong alignment between 
real and synthetic marginal distributions. As illustrated 
in Figure 1, the synthetic data closely follows the shape, 
central tendency, and dispersion of the original data 
distributions. Minor deviations are observed at extreme 
tails, particularly under stricter privacy budgets, which is 
consistent with the expected impact of noise injection 
under differential privacy constraints (Dwork et al., 2006; 
Dwork & Roth, 2014).

Compared with baseline private synthesis 
approaches, the probabilistic generative models 
exhibit substantially lower distributional distortion. 
This improvement can be attributed to their ability 
to model joint distributions rather than relying solely 
on independent attribute perturbation, as previously 
observed in Bayesian and GAN-based synthesis 
methods (Zhang et al., 2017; Xu et al., 2019).

Comparison of selected feature distributions 
between real and synthetic datasets, demonstrating 
close alignment under moderate privacy budgets.

Dependency Preservation
Beyond marginal statistics, preserving inter-attribute 
dependencies is critical for downstream analytical 
validity. Dependency preservation was assessed using 
pairwise correlation matrices computed for both real 
and synthetic datasets.

As shown in Figure 2, the synthetic data generated 
by the proposed framework retains the majority of 
correlation structures present in the original data. Strong 
positive and negative correlations are consistently 
reproduced, while weaker correlations exhibit mild 
attenuation as privacy constraints become tighter. 
This attenuation effect is expected, as differential 
privacy mechanisms introduce stochasticity that 
disproportionately affects low-signal dependencies 
(Hardt et al., 2012; Ping et al., 2017).
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Importantly, probabilistic models such as VAEs 
and GAN-based approaches outperform simpler 
private release mechanisms in capturing higher-
order dependencies. These findings align with prior 
evaluations of synthetic data quality in sensitive 
domains such as healthcare (Vallevik et al., 2024).

Heatmap comparison of pairwise correlations for real 
and synthetic datasets, highlighting strong structural 
similarity.

Privacy-Utility Trade-off Analysis
The privacy-utility trade-off was analyzed by varying 
the privacy budget ε and measuring downstream task 
performance using synthetic data. Utility was quantified 
using predictive accuracy for classification tasks and 
mean squared error for regression tasks.

Figure 3 illustrates the relationship between privacy 
budget and utility. As expected, utility improves 

monotonically with increasing ε, reflecting reduced 
noise injection and higher data fidelity. Under strict 
privacy constraints, a moderate degradation in utility is 
observed, particularly for complex downstream tasks. 
However, the decline is gradual rather than abrupt, 
indicating that the proposed framework effectively 
balances privacy and usefulness.

Compared to baseline differentially private generative 
models, the proposed approach consistently achieves 
higher utility for equivalent privacy budgets. This result 
is consistent with prior work demonstrating the benefits 
of advanced privacy accounting techniques such as 
Rényi Differential Privacy and moments accounting 
(Mironov, 2017; Wang et al., 2019; Abadi et al., 2016).

Utility performance of downstream tasks as a 
function of the differential privacy budget ε.

Comparative Model Performance
A comparative evaluation was conducted across 
multiple probabilistic generative models under identical 
privacy constraints. The models include differentially 
private Bayesian networks, VAE-based generators, and 
GAN-based approaches such as DP-GAN and PATE-GAN.

Table 2 summarizes the results in terms of statistical 
fidelity, downstream utility, and privacy robustness. 
GAN-based models achieve the highest marginal 
distribution fidelity, particularly for complex, non-linear 
data distributions. VAE-based models demonstrate 
more stable training behavior and competitive utility 
under moderate privacy budgets. Bayesian network 
models perform well on low-dimensional datasets 
but exhibit scalability limitations as dimensionality 
increases, consistent with earlier findings (Zhang et al., 
2017; Jordon et al., 2018; McKenna et al., 2021).

Figure 1: Marginal distribution comparison

Figure 2: Correlation heatmaps
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Figure 3:  Privacy budget versus utility curve

Table 2: Model comparison under identical privacy constraints

Model Statistical Fidelity 
(Distribution Similarity ↑)

Dependency Preservation 
(Correlation Error ↓)

Downstream Utility 
(Accuracy ↑)

Membership Inference 
Risk (Attack Accuracy ↓) Scalability

Bayesian Network 
(PrivBayes)

Moderate (0.78) Moderate (0.21) Moderate (0.74) Low (0.53) Limited

DP-VAE High (0.83) High (0.18) High (0.79) Very Low (0.51) Good

DP-GAN Very High (0.87) High (0.16) High (0.81) Low (0.52) Moderate

PATE-GAN High (0.85) Moderate (0.19) Moderate (0.77) Very Low (0.50) Limited

Proposed Framework Very High (0.89) Very High (0.14) Very High (0.84) Very Low (0.50) Good

Overall, the proposed framework achieves the most 
balanced performance, combining high fidelity with 
strong privacy guarantees and robustness across 
datasets.

Comparison of probabilistic generative models in 
terms of statistical fidelity, downstream utility, and 
privacy robustness at fixed privacy budget (ε = 1.0).

Table Notes
•	 Distribution similarity is measured using normalized 

statistical distance metrics, where higher values 
indicate closer alignment with real data.

•	 Correlation error represents the average absolute 
difference between real and synthetic pairwise 
correlations.

•	 Downstream utility is reported as predictive 
accuracy averaged across benchmark tasks.

•	 Membership inference risk is measured as attack 
accuracy, where values closer to 0.50 indicate 
random guessing.

•	 All models are evaluated under the same differential 
privacy budget (ε = 1.0) using comparable privacy 
accounting methods.

Attack Resistance Results
To evaluate privacy robustness, membership inference 
attacks were conducted against models trained on 
synthetic data. Attack success was measured using 

inference accuracy and advantage over random 
guessing.

Results indicate that synthetic datasets generated 
under strict differential privacy budgets substantially 
reduce vulnerability to membership inference attacks. 
Attack accuracy remains close to random baseline levels, 
confirming that the presence or absence of individual 
records cannot be reliably inferred. These findings are 
consistent with theoretical guarantees provided by 
differential privacy and empirical observations in prior 
studies (Shokri et al., 2017; Rosenblatt et al., 2020).

In contrast, non-private and weakly private 
generative models exhibit significantly higher attack 
success rates, highlighting the importance of formal 
privacy guarantees. The results reinforce the conclusion 
that statistical fidelity alone is insufficient without 
rigorous privacy mechanisms, a concern emphasized 
in recent surveys on privacy-preserving data synthesis 
(Hu et al., 2024).

Di s c u s s i o n
This section discusses the empirical findings of the 
study, situates them within the existing body of research 
on privacy-preserving synthetic data generation, and 
highlights their practical significance and limitations. 
The discussion focuses on the effectiveness of privacy 
guarantees, the preservation of statistical fidelity, and 
the broader implications for real-world data sharing.

Interpretation of Results

Privacy Effectiveness
The experimental results demonstrate that probabilistic 
generative models integrated with formal differential 
privacy mechanisms can provide strong and quantifiable 
privacy guarantees while enabling synthetic data 
release. Across all evaluated models, the enforcement 
of differential privacy successfully limited information 
leakage, as evidenced by the bounded privacy loss 
parameters and the observed resistance to membership 



Probabilistic Generative Models for Synthesizing Privacy-Preserving Big Data with Statistical Fidelity Guarantees

Journal of Data Analysis and Critical Management, Volume 01, Issue 4 (2025) 91

inference attacks. This aligns with the theoretical 
foundations of differential privacy, which ensure that 
the inclusion or exclusion of any single record has a 
limited influence on the output distribution (Dwork et 
al., 2006; Dwork & Roth, 2014).

The use of advanced privacy accounting techniques, 
particularly Rényi Differential Privacy, enabled tighter 
tracking of cumulative privacy loss during model 
training. This resulted in more effective utilization of 
the privacy budget compared to classical composition 
methods, confirming prior findings that Rényi-based 
accounting provides stronger guarantees for iterative 
learning algorithms (Mironov, 2017; Wang et al., 2019). 
Models trained with carefully calibrated noise exhibited 
significantly reduced vulnerability to inference attacks, 
supporting earlier observations that differentially 
private training mitigates adversarial risks inherent in 
machine learning systems (Abadi et al., 2016; Shokri et 
al., 2017).

Overall, the results indicate that probabilistic 
generative models, when combined with principled 
privacy mechanisms, can achieve privacy effectiveness 
that is both theoretically sound and empirically 
verifiable.

Fidelity Preservation
In addition to privacy protection, the results show 
that the proposed framework preserves a substantial 
degree of statistical f idelity. Synthetic datasets 
closely approximated the marginal distributions and 
pairwise correlations of the original data, particularly 
under moderate privacy budgets. This suggests that 
probabilistic modeling of joint distributions enables the 
retention of essential statistical properties even in the 
presence of injected noise.

Bayesian network-based approaches demonstrated 
strong performance in preserving structured 
dependencies, consistent with prior work showing their 
effectiveness for tabular data synthesis under privacy 
constraints (Zhang et al., 2017). Variational Autoencoder-
based models exhibited robust marginal distribution 
alignment, reflecting their capacity to learn compact 
latent representations of complex data distributions 
(Kingma & Welling, 2013; Rezende & Mohamed, 2015). 
GAN-based approaches, particularly conditional 
GANs, achieved competitive fidelity for mixed-type 
data but showed greater sensitivity to privacy noise, 
corroborating observations reported in earlier studies 
(Goodfellow et al., 2014; Xu et al., 2019).

These findings highlight the inherent trade-off 
between privacy and utility, while also demonstrating 

that careful model selection and privacy budget 
allocation can mitigate fidelity degradation.

Comparison with Prior Work
Compared to earlier privacy-preserving data release 
methods that rely on direct perturbation or histogram-
based techniques, the proposed approach offers 
superior scalability and expressiveness. Classical 
algorithms for private data release often struggle with 
high-dimensional data and complex dependencies, 
leading to significant utility loss (Hardt et al., 2012). In 
contrast, probabilistic generative models learn global 
data distributions, enabling more realistic synthetic 
outputs.

When compared with established systems such 
as PrivBayes and DataSynthesizer, the results show 
comparable or improved fidelity under similar privacy 
constraints, particularly in capturing higher-order 
relationships (Zhang et al., 2017; Ping et al., 2017). 
Furthermore, the framework aligns with recent large-
scale efforts in differentially private synthetic data 
generation, such as those developed for the NIST 
competition, while offering greater flexibility in model 
selection and evaluation (McKenna et al., 2021).

Relative to GAN-based privacy frameworks such 
as PATE-GAN and DP-GAN, the proposed approach 
demonstrates more stable privacy-utility behavior, 
especially when advanced accounting mechanisms are 
employed (Jordon et al., 2018; Xie et al., 2018). These 
results are consistent with recent survey-level analyses 
that emphasize the importance of unified evaluation 
across privacy, fidelity, and attack resistance dimensions 
(Hu et al., 2024).

Practical Implications

Data Sharing Scenarios
The findings of this study have direct implications for 
privacy-sensitive data sharing across multiple domains. In 
healthcare, synthetic data generated with formal privacy 
guarantees can support clinical research, algorithm 
development, and cross-institutional collaboration 
without exposing patient-level information, addressing 
concerns highlighted in recent quality assessment 
frameworks (Vallevik et al., 2024). Similarly, in finance and 
government analytics, synthetic datasets can enable 
transparency and innovation while complying with 
regulatory requirements.

The demonstrated balance between privacy and 
fidelity suggests that probabilistic generative models 
can serve as a viable alternative to restricted data access 
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models, facilitating broader data availability for research 
and development.

Deployment Considerations
From a deployment perspective, the results emphasize 
the importance of selecting appropriate privacy budgets 
and model architectures based on the intended use 
case. Excessively strict privacy parameters can lead to 
unnecessary utility degradation, while overly permissive 
settings may undermine trust in the released data. 
Organizations deploying synthetic data systems must 
therefore align privacy configurations with regulatory 
standards and risk tolerance levels.

Additionally, the computational cost of training 
differentially private generative models should be 
considered, particularly for large datasets. Efficient 
privacy accounting and scalable training strategies are 
critical for real-world adoption, as highlighted in prior 
applied evaluations of private synthetic data systems 
(Rosenblatt et al., 2020).

Limi   tat i o n s

Scalability
Despite promising results, scalability remains a key 
limitation. Training probabilistic generative models with 
differential privacy introduces additional computational 
overhead due to gradient clipping, noise injection, 
and privacy accounting. While recent advances have 
improved scalability, performance can still degrade 
for very large datasets or frequent retraining scenarios 
(Abadi et al., 2016; McKenna et al., 2021).

High-Dimensional Data
Another limitation arises in high-dimensional settings. 
As dimensionality increases, accurately modeling 
complex dependencies becomes more challenging, and 
the impact of privacy noise is amplified. This can lead to 
reduced fidelity, particularly for rare categories or weak 
correlations. These challenges are well documented 
in prior work on private data synthesis and highlight 
the need for future research on adaptive modeling 
strategies and dimensionality reduction techniques (Hu 
et al., 2024; Vallevik et al., 2024).

Co n c lu s i o n a n d Fu t u r e Wo r k

Summary of Findings
This study investigated the role of probabilistic 
generative models in synthesizing privacy-preserving 
big data while maintaining strong statistical fidelity 

guarantees. Through a systematic examination of 
Bayesian networks, variational autoencoders, and 
generative adversarial networks integrated with 
differential privacy mechanisms, the work demonstrated 
that synthetic data generation can serve as a viable 
alternative to direct data release in privacy-sensitive 
environments.

The experimental results showed that, when properly 
calibrated, differentially private generative models are 
capable of preserving key statistical properties of the 
original data, including marginal distributions and 
correlation structures, while significantly reducing the 
risk of privacy leakage. The analysis further highlighted 
the inherent trade-off between privacy protection and 
data utility, confirming that tighter privacy budgets 
lead to measurable degradation in downstream task 
performance. However, this degradation was not 
uniform across model classes, with probabilistic models 
exhibiting varying levels of robustness under identical 
privacy constraints.

Additionally, the evaluation against membership 
inference attacks demonstrated that incorporating 
formal differential privacy guarantees substantially 
improves resistance to adversarial exploitation 
compared to non-private generative approaches. 
These findings collectively confirm that privacy-
preserving synthetic data generation, when grounded in 
probabilistic modeling and rigorous privacy accounting, 
can achieve a balanced compromise between data 
usability and privacy protection.

Contributions to Privacy-Preserving Data 
Synthesis
This research makes several important contributions to 
the field of privacy-preserving data synthesis.

First, it provides a unified methodological perspective 
that bridges probabilistic generative modeling with 
formal differential privacy frameworks. By jointly 
considering privacy guarantees, statistical fidelity, and 
adversarial robustness, the study moves beyond single-
metric evaluations that dominate much of the existing 
literature.

Second, the work offers a structured comparison 
of multiple generative paradigms under consistent 
privacy constraints. This comparative analysis clarifies 
the strengths and limitations of Bayesian, VAE-based, 
and GAN-based approaches, thereby providing practical 
guidance for selecting appropriate models based on 
application requirements and risk tolerance.

Third, the study emphasizes comprehensive 
evaluation strategies that integrate statistical similarity 
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metrics, downstream utility assessments, and attack-
based privacy tests. This multidimensional evaluation 
framework contributes to improving trust and 
transparency in synthetic data systems, particularly in 
high-stakes domains such as healthcare, finance, and 
public policy analytics.

Finally, the research contributes empirical evidence 
supporting the feasibility of deploying differentially 
private synthetic data as a regulatory-compliant data 
sharing mechanism. By demonstrating that meaningful 
analytical insights can be preserved without exposing 
sensitive individual records, the study reinforces 
synthetic data generation as a foundational tool for 
responsible data science.

Directions for Future Research
Despite its contributions, this work also reveals several 
promising directions for future research.

One important avenue is the scalability of privacy-
preserving generative models to extremely high-
dimensional and large-scale datasets. As real-world data 
continue to grow in complexity, future studies should 
investigate model architectures and optimization 
techniques that maintain both privacy guarantees and 
statistical fidelity at scale.

Another direction involves adaptive privacy 
budgeting strategies. Rather than allocating a fixed 
privacy budget uniformly across the training process, 
future research could explore data-dependent or task-
aware budget allocation mechanisms that optimize 
utility while respecting global privacy constraints.

Further work is also needed to address robustness 
against emerging privacy attacks. While membership 
inference was considered in this study, future research 
should incorporate broader threat models, including 
attribute inference and model inversion attacks, 
particularly in adversarial deployment settings.

Additionally, integrating privacy-preserving synthetic 
data generation with federated and distributed learning 
paradigms represents a promising research frontier. 
Such integration could enable collaborative data 
analysis across institutions without centralized data 
sharing, thereby strengthening privacy guarantees 
while expanding analytical capabilities.

Finally, future studies should focus on developing 
standardized benchmarks and evaluation protocols for 
synthetic data quality and trustworthiness. Establishing 
widely accepted assessment frameworks would 
facilitate fair comparison across methods and accelerate 
the adoption of privacy-preserving synthetic data in 
practice.
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