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ABSTRACT

The increasing demand for large-scale data sharing in data-driven research and industry has intensified concerns
surrounding individual privacy and data confidentiality. Conventional privacy-preserving techniques such as anonymization,
suppression, and heuristic perturbation have proven insufficient, particularly for high-dimensional big data, where linkage
and inference attacks remain feasible. Synthetic data generation has therefore emerged as a promising alternative, enabling
data dissemination while reducing direct exposure of sensitive records. Nonetheless, achieving rigorous privacy guarantees
without sacrificing statistical fidelity and analytical utility remains a fundamental challenge.

This paper investigates probabilistic generative models as a principled solution for synthesizing privacy-preserving big data
with formal guarantees. A unified framework is presented that integrates probabilistic generative modeling with differential
privacy mechanisms to provide quantifiable protection against information leakage. The study examines Bayesian networks,
variational autoencoders, and generative adversarial networks, incorporating advanced privacy accounting techniques such
as Rényi differential privacy and moments-based analysis. Privacy budgets are carefully allocated, and noise is calibrated
to data sensitivity during model training to balance privacy and utility.

Comprehensive experiments are conducted on benchmark tabular datasets to evaluate privacy protection, statistical
fidelity, and downstream task performance. Results show that differentially private probabilistic generative models can
preserve marginal distributions, correlation structures, and predictive accuracy under strict privacy constraints. Moreover,
the generated synthetic datasets demonstrate strong resistance to membership inference attacks, indicating robustness
against common adversarial threats. Overall, this work provides a systematic and empirically grounded foundation for
trustworthy synthetic data generation, offering practical guidance for secure data sharing in sensitive domains and
governance contexts.
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Background and Motivation
The rapid growth of data-driven research has

fundamentally transformed scientific discovery,
industrial innovation, and policy decision-making.
Large-scale datasets now underpin advances in machine
learning, healthcare analytics, finance, transportation,
and public governance. Effective data sharing enables
reproducibility, benchmarking, and collaborative
research, and is widely regarded as essential for
accelerating innovation and maximizing the societal
value of collected data. As a result, organizations
increasingly seek mechanisms to release or share
datasets beyond their original collection contexts.
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However, the release of large-scale datasets poses
substantial privacy risks. Even when direct identifiers
are removed, sensitive information about individuals
can often be inferred through linkage attacks,
background knowledge, or statistical correlations.
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Empirical studies have repeatedly demonstrated that
supposedly anonymized datasets remain vulnerable
to re-identification, particularly in high-dimensional
settings where unique attribute combinations are
common. These risks are further amplified by advances
in machine learning, which enable adversaries to exploit
subtle statistical patterns at scale.

In response to these concerns, regulatory and
ethical constraints on data sharing have become
increasingly stringent. Legal frameworks such as data
protection regulations mandate strong safeguards to
protect individual privacy and impose severe penalties
for misuse or unauthorized disclosure. Beyond legal
compliance, ethical considerations require that data
custodians minimize harm, respect consent, and prevent
unintended secondary use of personal information.
Together, these pressures create afundamental tension
between the demand for open data and the obligation
to protect privacy, motivating the search for principled,
technically sound solutions.

Limitations of Existing Privacy Protection
Approaches

Traditional privacy protection techniques have largely
relied on anonymization, heuristic masking, or ad hoc
perturbation methods. Common strategies include
removing identifiers, generalizing quasi-identifiers,
suppressing rare records, or injecting random noise into
data values. While these methods are intuitive and easy
to implement, extensive prior work has shown that they
provide limited and often illusory privacy protection.
Anonymized datasets can frequently be re-identified
by linking them with auxiliary information, undermining
the assumption that de-identification alone is sufficient.

To address these weaknesses, formal privacy models
such as differential privacy were introduced to provide
mathematically rigorous guarantees against a wide
range of adversarial attacks. Differential privacy ensures
that the presence or absence of any single individual
has a limited impact on the released output, regardless
of an adversary’s background knowledge. While this
framework represents a significant theoretical advance,
its practical application introduces new challenges.

In particular, achieving strong privacy guarantees
often requires injecting substantial noise into data or
guery outputs. For complex, high-dimensional datasets,
this noise can severely degrade data utility, distorting
statistical relationships and rendering the released data
unsuitable for downstream analysis. Excessive noise
compromises model accuracy, weakens correlation
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structures, and undermines the very purpose of data
sharing. As a result, existing approaches frequently force
practitioners to choose between privacy and usefulness,
rather than offering a balanced solution.

Synthetic Data as a Privacy-Preserving
Alternative

Synthetic data generation has emerged as a promising
alternative to direct data release. Instead of publishing
modified versions of real records, synthetic data
approaches aim to generate artificial datasets that
resemble the original data in their statistical properties
while containing no direct copies of individual records.
By learning an underlying data-generating distribution,
synthetic data models can support analysis, model
training, and benchmarking without exposing sensitive
personal information.

Probabilistic generative models provide a natural
foundation for synthetic data generation. By explicitly
modeling joint distributions over attributes, these
methods can capture complex dependencies, non-
linear relationships, and heterogeneous data types.
Recent advances in generative modeling, including
Bayesian networks, variational autoencoders, and
generative adversarial networks, have significantly
improved the realism and scalability of synthetic data
generation.

However, synthetic data alone does not guarantee
privacy. Without formal safeguards, generative
models may memorize training data or leak sensitive
information through overfitting, enabling inference
attacks. Consequently, there is a growing recognition
that synthetic data generation must be combined with
formal privacy mechanisms. Differential privacy offers a
principled framework for enforcing privacy guarantees
during model training or data release, ensuring that
synthetic outputs provide provable protection against
re-identification and inference attacks.

Research Problem and Objectives

Despite substantial progress, a fundamental research
problem remains unresolved: how to synthesize large-
scale datasets that simultaneously provide strong
privacy guarantees and high statistical fidelity. On
one hand, strict privacy constraints limit the amount
of information that can be learned from the data. On
the other hand, meaningful data analysis requires
preserving marginal distributions, correlations, and
higher-order dependencies that characterize real-world
datasets.
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This tension is commonly referred to as the privacy-
utility trade-off. While numerous methods have been
proposed to navigate this trade-off, there is still no
consensus on how to systematically evaluate and
compare different approaches across privacy, fidelity,
and robustness dimensions. In particular, many existing
studies focus on either privacy guarantees or empirical
utility, without rigorously assessing whether synthetic
data faithfully preserves the statistical structure of the
original data.

The primary objective of this study is to investigate
probabilistic generative models for privacy-preserving
synthetic data generation under formal differential
privacy constraints. Specifically, this work aims to
analyze how different generative modeling paradigms
balance privacy protection with statistical fidelity, and to
identify design choices that lead to robust, high-quality
synthetic datasets suitable for practical deployment.

Contributions of This Study

This paper makes the following key contributions:

«  Comprehensive analysis of probabilistic generative

models for private data synthesis.

+  We systematically examine Bayesian, variational,
and adversarial generative frameworks in the
context of synthetic data generation under
privacy constraints.

Integration of formal differential privacy mechanisms
with generative modeling.

« The study incorporates rigorous privacy
accounting techniques, including advanced
differential privacy formulations, to ensure
provable privacy guarantees.

Unified evaluation framework for privacy, utility, and
statistical fidelity.

+  We propose and apply a structured evaluation
protocol that jointly assesses privacy protection,
distributional similarity, dependency
preservation, and downstream task performance.

Empirical comparison across multiple generative
paradigms.

« Through extensive experiments, we compare
model behavior underidentical privacy budgets,
highlighting strengths, limitations, and trade-
offs.

Practical insights for real-world data sharing.

- The findings provide actionable guidance
for practitioners seeking to deploy privacy-
preserving synthetic data solutions in sensitive
domains such as healthcare, finance, and public

policy.
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Related Work

Privacy-preserving data synthesis sits at the intersection
of tworesearch lines: (i) formal privacy protection for data
release, especially differential privacy and its accounting
frameworks, and (i) probabilistic generative modeling
for learning high-dimensional joint distributions and
producing realistic synthetic samples. Recent work
increasingly treats synthetic data as a first-class privacy
product, where claims about privacy must be formal,
and claims about utility must be demonstrated with
statistical fidelity and downstream task performance,
alongside explicit risk testing against known attacks
(Dwork & Roth, 2014; Hu et al., 2024).

Differential Privacy and Private Data Analysis

Classical differential privacy

Differential privacy (DP) provides a rigorous guarantee
that the output of a computation is insensitive to any
single individual record in the input dataset. The classical
formulation uses parameters X (privacy loss) and sometimes
X (probability of failure) to bound how much an adversary’s
inference can change when one record is added or removed.
A core operational principle is that privacy protection
depends on the sensitivity of the query or algorithm, and
privacy is enforced by adding calibrated random noise
(Dwork et al., 2006). This shift from ad hoc anonymization to
formal, worst-case guarantees is foundational for modern
privacy-preserving analytics, because it limits privacy leakage
even under powerful auxiliary information assumptions
(Dwork & Roth, 2014).

DP initially emerged in the context of answering
statistical queries and releasing aggregate information
while controlling disclosure risk. The simplest
mechanisms, such as the Laplace mechanism, calibrate
noise to the global sensitivity of a function, ensuring
that neighboring datasets (differing in one individual’s
record) yield similar output distributions (Dwork et
al., 2006). This concept has been extended across a
wide range of analyses, including private data release
algorithms for structured outputs such as histograms
and contingency tables, where the design emphasizes
practicality and accuracy under privacy constraints
(Hardt et al., 2012).

Mechanism design and composability

A major strength of DP is composability: when multiple
analyses are performed, privacy losses can be accumulated
and tracked, enabling principled control of repeated access
to sensitive data (Dwork & Roth, 2014). This is especially
important in big data and machine learning pipelines,
where training procedures can involve many iterations
and multiple releases.
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Differential privacy is also closely connected to
mechanism design and strategic behavior in settings
where individuals may manipulate inputs or where
outputs influence incentives. DP can be used to design
mechanisms that provide both privacy and approximate
truthfulness guarantees, linking privacy constraints with
robust economic outcomes (McSherry & Talwar, 2007). In
data synthesis contexts, this perspective motivates the
view that a privacy-preserving generator is not only a
statistical model but also a release mechanism whose
outputs must satisfy formally defined constraints under
adaptive querying and repeated releases (Dwork & Roth,
2014; Hu et al., 2024).

Privacy Accounting Methods

Rényi Differential Privacy

While classical (g, §)-DP is intuitive, modern learning-
based synthesis often requires tighter and more
convenient accounting methods. Rényi Differential
Privacy (RDP) generalizes DP using Rényi divergence
to quantify privacy loss. RDP is particularly effective for
composition, because privacy costs can be accumulated
additively in the Rényi domain and later converted to (g,
6)-DP bounds (Mironov, 2017). This yields substantially
tighter accounting for iterative algorithms such as
stochastic gradient descent, a typical training approach
for deep generative models used in synthetic data
production.

Moments accountant and subsampling

For deep learning, privacy loss is influenced by repeated
gradient updates, per-step noise injection, and sampling
schemes. The moments accountant framework tracks
privacy loss over multiple steps by bounding the
moments of the privacy loss random variable, producing
tighter bounds than naive composition and enabling
practical training of large models with quantifiable
privacy guarantees (Abadi et al., 2016). Subsampling
further amplifies privacy, since each training step
uses only a subset of records, reducing the expected
influence of any single individual.

Subsampled Rényi DP provides a rigorous analysis
of privacy amplification due to subsampling and
supports analytical tracking of privacy in iterative
algorithms, improving precision over earlier methods
and aligning naturally with minibatch learning used in
modern generative modeling (Wang et al., 2019). These
accounting advances are central to privacy-preserving
synthetic data generation, because they make it
feasible to train expressive models while still providing
meaningful end-to-end privacy parameters.
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Probabilistic Models for Synthetic Data

Synthetic data generation aims to approximate the
underlying data-generating distribution while avoiding
disclosure of sensitive individual records. Probabilistic
models differ in how they represent and learn joint
distributions, and these differences strongly shape both
fidelity and privacy risk.

Bayesian networks

Bayesian networks represent the joint distribution of
variables via a directed acyclic graph and conditional
probability tables. This structure can be especially useful
for tabular data, where variable dependencies can be
captured explicitly through conditional factorizations.
In privacy-preserving synthesis, Bayesian-network-
based approaches have been among the strongest
classical baselines, because they allow controlled
modeling of correlations and can support targeted
private releases via structured factorization (Zhang et
al., 2017). PrivBayes, for example, uses DP in the learning
and release process and demonstrates that Bayesian
network structure can support strong utility under
privacy constraints for many tabular workloads (Zhang
etal,, 2017).

Variational Autoencoders

Variational Autoencoders (VAEs) are latent-variable
generative models that learn an encoder-decoder
structure and optimize an evidence lower bound (ELBO),
enabling flexible modeling of complex distributions
(Kingma & Welling, 2013). VAEs provide a probabilistic
framework that can be adapted for tabular and mixed-
type data through architectural choices and likelihood
models. However, basic VAEs may struggle with sharp
distributional matching and complex discrete structures
without careful design, which motivates extensions that
increase expressiveness.

Normalizing flows strengthen probabilistic
generative modeling by transforming simple base
distributions into complex ones via a sequence
of invertible mappings, allowing exact likelihood
evaluation and richer density estimation (Rezende
& Mohamed, 2015). In synthetic data contexts, flows
can offer improved fidelity in capturing complicated
variable interactions, though the computational cost
and architectural constraints can be significant for high-
dimensional tabular data.

Generative Adversarial Networks

Generative Adversarial Networks (GANs) learn a
generator by competing against a discriminator in a
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minimax game, producing samples that can be highly
realistic when training is stable (Goodfellow et al., 2014).
For tabular data, stability challenges and heterogeneous
data types require specialized adaptations. Conditional
GANs for tabular data, such as CTGAN, introduce
conditioning and architectural modifications to better
handle mixed continuous and categorical variables and
imbalanced categories, improving utility for tabular
synthesis tasks (Xu et al., 2019). GAN-based synthesis is
widely used in practice due to strong empirical sample
quality, but it introduces nontrivial privacy concerns
because powerful generators can memorize outliers or
rare records, especially under overfitting.

Differentially Private Synthetic Data Generation

Differentially private data synthesis integrates
formal DP guarantees into the training or release of
generative models. Broadly, two strategies dominate:
(i) perturbation of training dynamics, and (ii) private
aggregation or teacher-student approaches.

DP-GAN and PATE-GAN

DP-GAN approaches typically apply DP-SGD style
training, where gradients are clipped and noise is added
to gradients to control the influence of any individual
record, enabling end-to-end DP bounds for deep
generative models (Abadi et al., 2016; Xie et al., 2018).
The DP-GAN line addresses the challenge of maintaining
GAN training stability under noisy gradients, balancing
fidelity with privacy budgets.

PATE-GAN leverages the PATE framework, using
multiple teacher models trained on disjoint subsets
and an aggregation mechanism that provides privacy
while guiding the student generator. This approach
aims to reduce direct exposure of individual records
while producing useful synthetic data, particularly for
sensitive domains (Jordon et al., 2018). Teacher-student
strategies can offer practical privacy advantages, but
their performance depends on the quality and diversity
of teachers and the aggregation noise.

Private tabular data synthesis systems

Beyond deep models, practical systems have been
built to support privacy-preserving synthetic tabular
datasets. DataSynthesizer provides an end-to-end
pipeline for generating synthetic datasets with privacy
controls and a focus on usability for data publishing
workflows (Ping et al., 2017). PrivBayes remains a
widely cited structured baseline for DP tabular release,
illustrating how probabilistic graphical models can be
combined with DP mechanisms for usable releases
(Zhang et al., 2017).
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At larger scales and in competitive evaluations, methods
that combine principled accounting with scalable
mechanisms have been shown to perform strongly. A
prominent example is the approach associated with
winning the NIST contest on differentially private
synthetic data, emphasizing generality, scalability,
and practical utility under DP constraints (McKenna
et al., 2021). Applied evaluations also highlight that
DP synthetic data must be assessed across multiple
dimensions, including fidelity, downstream performance,
and privacy risk, and that tuning and enhancements can
significantly affect real-world outcomes (Rosenblatt et
al., 2020). Recent systematizations further consolidate
these directions by surveying privacy-preserving
synthesis methods, highlighting best practices and
open challenges across model classes and evaluation
protocols (Hu et al., 2024).

Privacy Attacks and Evaluation Risks

Membership inference attacks

Even when synthetic data looks statistically accurate,
it may still leak information about whether specific
individuals were part of the training dataset. Membership
inference attacks formalize this risk by testing whether
an adversary can infer membership using access to a
model or its outputs. These attacks demonstrate that
models can inadvertently memorize training records,
especially under overfitting, making privacy evaluation
a critical complement to utility metrics (Shokri et al.,
2017). In synthetic data settings, a strong fidelity score
does notimply safety, because rare records and outliers
can be memorized while aggregate statistics remain
accurate. This reality motivates the integration of attack-
based evaluations into synthesis validation pipelines
(Rosenblatt et al., 2020; Hu et al., 2024).

Trust and validation challenges

Trust in synthetic data depends on more than privacy
parameters. Stakeholders require evidence that
synthetic datasets preserve relevant statistical structure
while not introducing harmful artifacts, biases,
or invalid dependencies. Comprehensive quality
assessment frameworks have emerged, especially in
healthcare, where statistical fidelity must be validated
across distributions, correlations, clinical plausibility,
and task-specific utility, often with domain-informed
checks (Vallevik et al., 2024). At the same time, DP
parameters alone can be misunderstood or misapplied
if accounting assumptions do not match deployment,
if multiple releases are combined without correct
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composition, or if post-processing steps reintroduce
risks. Therefore, modern evaluation increasingly
combines: (i) formal privacy guarantees through DP
and advanced accounting (Dwork et al., 2006; Mironov,
2017; Wang et al., 2019), (i) fidelity and utility testing
using statistical and task-based metrics (Hardt et al.,
2012; Xu et al., 2019), and (iii) explicit privacy risk testing
against known attacks (Shokri et al., 2017), supported
by systematic guidance for privacy-preserving synthesis
(Hu et al., 2024).

Problem Formulation and Preliminaries

This section formalizes the problem of privacy-
preserving data synthesis using probabilistic generative
models. We introduce the notation, define the privacy
and utility objectives, and specify the adversarial threat
model under which synthetic data is evaluated. These
preliminaries establish the theoretical foundation for
the proposed approach.

3.1 Notation and Definitions

Dataset Representation
Let

D= {x, xy,..., x,}

denote a real dataset consisting of n records, where
each record

x;€EX S RY

is a d-dimensional data vector. The dataset may contain
heterogeneous attribute types, including numerical,
categorical, and ordinal variables, which is typical in real-
world tabular big data applications such as healthcare,
finance, and governance.

We assume that D is drawn from an unknown
underlying data-generating distribution P4, The
objective of synthetic data generation is to learn a
probabilistic model Py, parameterized by 6, such that
samples drawn from P4 resemble draws from P, while
providing formal privacy guarantees.

The synthetic dataset is denoted as

D ={xy, Xp,..0, X}
Where m may differ from n, and each synthetic record
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is generated without direct exposure of individual
records in D.

Privacy Parameters

Privacy guarantees are expressed using differential
privacy. Let € > 0 denote the privacy budget, which
controls the strength of the privacy guarantee, and
6=0 denote a small failure probability in approximate
differential privacy. Smaller values of € correspond to
stronger privacy protection at the cost of reduced data
utility (Dwork et al., 2006; Dwork & Roth, 2014).

For advanced privacy accounting, we also consider
Rényi Differential Privacy, parameterized by an order a
>1and a corresponding privacy loss bound €, (Mironoy,
2017). This formulation enables tighter privacy analysis
under composition, particularly in iterative training
procedures such as deep generative model optimization
(Abadi et al., 2016; Wang et al., 2019).

Formal Definition of Privacy-Preserving Data
Synthesis

Privacy-preserving data synthesis aims to generate
synthetic datasets that satisfy two core requirements:
formal privacy protection and statistical fidelity to the
original data.

Differential Privacy Constraints

Two datasets D and D' are defined as neighboring
datasets if they differ in exactly one individual record.
A randomized synthetic data generation mechanism M
satisfies (g, §)-differential privacy if, for all neighboring
datasets D,’ and for all measurable subsets S of possible
outputs, the following holds:

Pr[M(D) € S] < e Pr[M(D’) € S] + 6.

This definition ensures that the inclusion or exclusion
of any single individual in the dataset has a bounded
influence on the distribution of the generated synthetic
data (Dwork et al., 2006; McSherry & Talwar, 2007). In
the context of generative models, privacy is enforced
during model training, typically through noise injection
into gradients or sufficient statistics, so that the learned
parameters 6 do not encode sensitive information about
specific records (Abadi et al., 2016; Xie et al., 2018).

When Rényi Differential Privacy is employed, privacy
guarantees are first established in the Rényi framework
and later converted to (g, §)-differential privacy bounds
for reporting and comparison (Mironov, 2017; Wang et
al,, 2019).
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Statistical Fidelity Constraints

While privacy constrains information leakage, synthetic

data must also preserve the statistical properties of the

original dataset to remain useful. Statistical fidelity refers

to the degree to which the synthetic distribution P,

approximates the true data distribution Pg,,.
Formally, fidelity can be characterized through a set

of distributional similarity criteria, including:

«  Preservation of marginal distributions for individual
attributes

« Preservation of pairwise and higher-order
correlations

«  Similarity in summary statistics such as means,
variances, and quantiles

Let F denote a family of statistical queries or test

functions. Statistical fidelity requires that, for all f € F,

|E~Pgata [(X)] = Ex " ~Polf (xD]I

is minimized subject to the differential privacy
constraints. This formulation aligns with prior work on
private data release and synthetic data evaluation (Hardt
et al,, 2012; Ping et al., 2017; Vallevik et al., 2024).

The central challenge is that increasing privacy
strength typically degrades fidelity, creating an inherent
privacy-utility trade-off that must be carefully managed.

Threat Model

A clear threat model is essential for evaluating the
robustness of privacy-preserving synthetic data.

Adversarial Assumptions

We assume an honest-but-curious adversary with access
to the released synthetic dataset D7, full knowledge
of the data synthesis algorithm, and knowledge of all
hyperparameters except the specific randomness used
during training. This aligns with standard assumptions in
differential privacy, where security relies on randomness
rather than secrecy of the algorithm (Dwork & Roth,
2014).

The adversary does not have direct access to the
original dataset D but may possess auxiliary information
drawn from the same population.

Attack Capabilities
The adversary may attempt the following attacks:

Membership Inference Attacks

«  Theadversary seeks to determine whether a specific
individual’s record was included in the training
dataset by analyzing patterns in the synthetic data
or trained model outputs (Shokri et al., 2017).
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Attribute Inference Attacks

« Given partial information about an individual, the
adversary attempts to infer sensitive attributes
using correlations preserved in the synthetic data.

Distributional Inference Attacks

- Theadversary attempts to infer sensitive population-
level properties of the original dataset beyond what
is permitted by the privacy budget.

Differential privacy provides provable protection

against these attacks by ensuring that the presence or

absence of any single individual has a negligible effect

on the synthetic output distribution, regardless of the

adversary’s auxiliary knowledge (Dwork et al., 2006; Hu

et al., 2024).

METHODOLOGY

This section describes the methodological framework
adopted for synthesizing privacy-preserving big
data using probabilistic generative models while
ensuring formal differential privacy guarantees and
high statistical fidelity. The methodology integrates
principled probabilistic modeling with rigorous privacy
mechanisms to balance utility, privacy, and robustness
against inference attacks.

Overview of the Proposed Approach

The proposed approach follows a modular pipeline
designed to generate high-quality synthetic datasets
under formal differential privacy constraints. The
framework consists of four main components:
probabilistic generative modeling, privacy mechanism
integration, synthetic data generation, and post-
generation evaluation.

First, a probabilistic generative model is trained to
approximate the joint distribution of the original dataset.
This model learns complex dependencies among
attributes without explicitly memorizing individual
records, which is critical for privacy preservation.
Second, differential privacy is integrated into the
learning process through controlled noise injection and
strict privacy accounting, ensuring that the contribution
of any single data point is mathematically bounded.
Third, synthetic data are sampled from the trained
generative model, producing records that resemble
the statistical structure of the original data but contain
no direct personal information. Finally, the generated
data are evaluated using statistical fidelity metrics,
downstream task performance, and resistance to privacy

attacks.
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This unified design aligns with established principles
of private data analysis and synthetic data generation
while addressing scalability and expressiveness
challenges in high-dimensional tabular data (Dwork et
al., 2006; Dwork & Roth, 2014; Hu et al., 2024).

Probabilistic Generative Model Design

Model Selection Rationale

Probabilistic generative models are selected due to
their ability to explicitly model uncertainty and capture
complex joint distributions over heterogeneous
attributes. Unlike deterministic anonymization
techniques, probabilistic models enable controlled
sampling from learned distributions, which is essential
for generating realistic yet non-identifying synthetic
data.

This study considers three major classes of
probabilistic models: Bayesian networks, variational
autoencoders, and generative adversarial networks.
Bayesian networks provide interpretable factorized
representations of joint distributions and have
been successfully applied to private data synthesis,
as demonstrated by PrivBayes (Zhang et al., 2017).
However, their scalability is limited in very high-
dimensional settings.

Variational autoencoders model data through
latent variables and optimize a variational lower bound
on the data likelihood, offering stable training and
strong theoretical grounding (Kingma & Welling, 2013).
Extensions using normalizing flows further enhance
expressiveness by enabling more flexible posterior
distributions (Rezende & Mohamed, 2015).

Generative adversarial networks are employed due
to their strong empirical performance in modeling
complex data distributions. Conditional GAN variants
are particularly effective for tabular data with mixed
attribute types, as they allow conditional generation
and better capture feature dependencies (Goodfellow
etal., 2014; Xu et al., 2019).

The inclusion of multiple model classes allows
comparative analysis of expressiveness, stability, and
privacy-utility trade-offs.

Learning Objectives

The learning objective of each probabilistic model is to
approximate the true data-generating distribution while
satisfying privacy constraints. For Bayesian networks,
this involves maximizing the likelihood of the data
under a learned graphical structure. For variational
autoencoders, the objective is to maximize the evidence
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lower bound, balancing reconstruction accuracy and
latent regularization (Kingma & Welling, 2013). For GAN-
based models, training follows a minimax objective
in which a generator and discriminator are optimized
adversarially (Goodfellow et al., 2014).

When differential privacy is applied, these objectives
are modified to include noise-perturbed gradients
or statistics, ensuring that optimization remains
privacy compliant while converging to a meaningful
approximation of the original distribution (Abadi et al.,
2016; Xie et al., 2018).

Integration of Differential Privacy

Noise Calibration

Differential privacy is enforced by calibrating noise
to the sensitivity of the learning process. Sensitivity
measures the maximum change in the output of
a function when a single data record is modified.
Following classical differential privacy principles, noise
drawn from Gaussian or Laplace distributions is added
to model updates or sufficient statistics in proportion
to this sensitivity (Dwork et al., 2006).

In deep generative models, gradient clipping is
applied to bound the influence of individual samples
before noise injection. This ensures that no single
data point can disproportionately affect the learning
outcome, a requirement for achieving meaningful
privacy guarantees (Abadi et al., 2016).

Privacy Budget Allocation

The total privacy budget ¢ is allocated across training
iterations and model components to balance
convergence quality and privacy protection. Rather than
consuming the entire budgetin a single step, the budget
is distributed incrementally across epochs, allowing the
model to learn progressively while maintaining strict
privacy bounds.

This staged allocation is particularly important for
iterative training procedures such as GANs and VAEs,
where repeated access to the data would otherwise
rapidly exhaust the privacy budget (McSherry & Talwar,
2007).

Privacy Accounting Method

To obtain tight and interpretable privacy guarantees,
Rényi Differential Privacy is used for privacy accounting.
RDP provides a flexible framework for tracking privacy
loss across multiple compositions and supports
conversion to standard e-differential privacy bounds
(Mironov, 2017).
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Additionally, subsampled Rényi differential privacy and
analytical moments accounting are employed to exploit
privacy amplification effects due to minibatch sampling,
resulting in significantly improved utility for a fixed
privacy budget (Wang et al., 2019). These accounting
methods enable precise tracking of cumulative privacy
loss over training iterations.

Synthetic Data Generation Procedure

Training Phase

During the training phase, the probabilistic generative
modelis optimized using the privacy-preserving learning
procedure described above. The model parameters are
updated iteratively using noise-perturbed gradients or
statistics, with privacy loss tracked after each update.
Training continues until convergence criteria are met
or the allocated privacy budget is exhausted.

This phase produces a differentially private model
that encodes a smoothed approximation of the original
data distribution without retaining identifiable records.

Data Generation Phase

Once training is complete, synthetic data are generated
by sampling from the learned probabilistic model. For
Bayesian networks, this involves ancestral sampling
from the learned conditional distributions. For VAEs,
latent variables are sampled from the prior distribution
and decoded into synthetic records. For GAN-based
models, the generator produces synthetic samples from
random noise vectors.

Importantly, the data generation phase does not
incur additional privacy loss, as differential privacy
is guaranteed during training. This allows unlimited
generation of synthetic datasets from the trained model
(Dwork & Roth, 2014; McKenna et al., 2021).

Computational Considerations

Computational efficiency is a critical factor in privacy-
preserving synthetic data generation, particularly
for large-scale datasets. Gradient clipping and noise
injection introduce additional computational overhead,
especially in deep generative models. To mitigate this,
minibatch training and parallelized computation are
employed where possible.

Model selection also impacts computational cost.
Bayesian networks offer lower training complexity but
scale poorly with dimensionality, while GANs and VAEs
require greater computational resources but provide
superior expressiveness for complex data distributions.
These trade-offs are considered in the experimental
evaluation.
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Finally, privacy accounting adds minimal overhead
compared to model training but plays a crucial role in
ensuring reproducibility and transparency. Accurate
reporting of privacy parameters and accounting
methods is essential for real-world deployment and
regulatory compliance (Rosenblatt et al., 2020; Vallevik
et al., 2024).

Experimental Setup

This section describes the datasets, baseline methods,
evaluation metrics, and attack models used to
systematically assess the effectiveness of probabilistic
generative models for privacy-preserving synthetic data
generation. The experimental design is constructed to
evaluate three core dimensions simultaneously: formal
privacy guarantees, statistical fidelity of synthetic data,
and robustness against adversarial inference attacks.

Datasets

Description of Benchmark Datasets

To ensure generality and reproducibility, experiments
are conducted on widely used benchmark tabular
datasets that are representative of real-world big data
scenarios. These datasets are selected based on the
following criteria: mixed data types, moderate to high
dimensionality, and relevance to privacy-sensitive
domains such as healthcare, finance, and social statistics.
Such characteristics make them appropriate for
evaluating both statistical fidelity and privacy leakage
risks in synthetic data generation, as emphasized in
prior studies on private data release and synthetic data
quality assessment (Ping et al., 2017; McKenna et al.,
2021; Vallevik et al., 2024).

Each dataset is split into training and evaluation
subsets. The training portion is used exclusively to
learn generative models, while the evaluation portion
is reserved for downstream utility testing and attack
simulations. No real records from the evaluation subset
are exposed during training, in order to avoid data
leakage and ensure a fair privacy assessment.

Attribute Types and Dimensionality

The datasets contain a combination of the following

attribute types:

«  Numerical attributes, including continuous and
discrete variables such as age, income, or clinical
measurements

« Categorical attributes, representing non-ordinal
variables such as gender, diagnosis codes, or
occupation

9



Probabilistic Generative Models for Synthesizing Privacy-Preserving Big Data with Statistical Fidelity Guarantees

«  Ordinal attributes, such as education level or risk
categories
«  Binary attributes, indicating presence or absence of
specific conditions or events
Dimensionality varies across datasets, ranging from low-
dimensional settings with fewer than 20 attributes to
high-dimensional tabular data exceeding 50 attributes.
This variation allows the evaluation of model scalability
and robustness under increasing complexity, which
is known to exacerbate privacy-utility trade-offs in
differentially private systems (Dwork & Roth, 2014; Hu
et al., 2024).
Table 1 summarizes the key properties of the
datasets used for experimental evaluation.

Baseline Methods

To provide a meaningful comparison, both non-private
generative models and existing differentially private
synthesis methods are included as baselines.

Non-Private Generative Models

Non-private generative models are used to establish
an upper bound on achievable statistical fidelity and
downstream utility. These models are trained without
any privacy constraints and therefore represent
idealized performance scenarios. The following non-
private baselines are considered:

« Variational Autoencoders (VAEs), which model
the data distribution using latent variables and
variational inference (Kingma & Welling, 2013;
Rezende & Mohamed, 2015)

«  Generative Adversarial Networks (GANSs), trained
using a minimax objective to capture complex joint
distributions (Goodfellow et al., 2014)

. Conditional GANs for tabular data, which
explicitly model mixed data types and conditional
dependencies (Xu et al., 2019)

Although these models typically achieve high fidelity,

they provide no formal privacy guarantees and are

vulnerable to inference attacks (Shokri et al., 2017).

Existing Private Synthesis Methods

To evaluate privacy-preserving performance, the
proposed approach is compared against established
differentially private synthetic data generation methods,

including:

«  PrivBayes, which constructs a Bayesian network
under differential privacy constraints (Zhang et al.,
2017)

«  DP-GAN, which applies gradient perturbation
during GAN training (Xie et al., 2018)

«  PATE-GAN, which uses a teacher-student framework
to provide strong privacy guarantees (Jordon et al.,
2018)

- DataSynthesizer, a practical system for private
tabular data synthesis (Ping et al., 2017)

«  Modern DP synthesis frameworks, designed for
scalability and generality (McKenna et al., 2021)
These baselines allow a comprehensive comparison

across model architectures and privacy mechanisms.

Evaluation Metrics

The evaluation framework follows a multi-dimensional
assessment strategy, combining privacy guarantees,
statistical fidelity, and downstream utility.

Privacy Metrics
Privacy is quantified using formal differential privacy
parameters, including the privacy budget € and, where
applicable, Rényi Differential Privacy parameters. Privacy
accounting is performed using established techniques
such as moments accounting and Rényi DP composition,
which provide tighter bounds under repeated training
iterations (Abadi et al., 2016; Mironov, 2017; Wang et
al,, 2019).

Lower € values correspond to stronger privacy
guarantees, but typically result in increased noise and
reduced utility.

Statistical Fidelity Metrics

Statistical fidelity measures how well the synthetic
data preserves the statistical properties of the original
dataset. The following metrics are employed:

« Marginal distribution similarity, assessed using
distance measures between real and synthetic
attribute distributions

« Pairwise correlation preservation, evaluating the
extent to which dependency structures are retained

« Higher-order statistics, capturing multivariate
relationships

Table 1: Dataset Characteristics

Dataset Domain Number of Records ~ Number of Attributes Attribute Types

Dataset A Healthcare N, D, Numerical, Categorical, Binary
Dataset B Finance N, D, Numerical, Categorical

Dataset C Socio-economic  N; Ds Numerical, Ordinal, Categorical

9
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These metrics are widely recognized as essential
indicators of synthetic data quality (Hardt et al., 2012;
Vallevik et al., 2024).

Downstream Utility Metrics

To assess practical usefulness, downstream machine
learning tasks are performed using synthetic data.
Models trained on synthetic data are evaluated on
real test sets, and performance is compared against
models trained on real data. Common evaluation
measures include accuracy, precision, recall, and error
rates, depending on the task. This approach reflects real
deployment scenarios where synthetic datais used as a
substitute for sensitive datasets (Rosenblatt et al., 2020).

Attack Evaluation

Membership Inference Testing Protocol

Robustness against privacy attacks is evaluated using

membership inference attacks, which aim to determine

whether a specific individual record was included in

the training dataset. This attack model is particularly

relevant for generative models, as high-fidelity synthesis

can inadvertently leak membership information (Shokri

etal., 2017).

The attack protocol follows a standard procedure:

« A target generative model is trained on a private
dataset.

« The adversary queries the model or samples
synthetic data.

. Statistical tests or shadow models are used to infer
membership status.

«  Attack success is measured using inference accuracy
and advantage over random guessing.

A model is considered privacy-robust if the attack

success rate remains close to random chance, even

when high statistical fidelity is achieved. This evaluation

complements formal privacy guarantees and provides

empirical evidence of resistance to real-world adversarial

behavior (Rosenblatt et al., 2020; Hu et al., 2024).

REsuLTs

This section presents the empirical evaluation of
the proposed privacy-preserving probabilistic
generative framework. Results are reported across four
complementary dimensions: statistical fidelity, privacy-
utility trade-offs, comparative model performance, and
resistance to privacy attacks. Together, these analyses
provide a comprehensive assessment of both data
usefulness and privacy protection.
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Statistical Fidelity Results

Statistical fidelity measures the extent to which the
synthetic data preserves the statistical properties of the
original dataset. Two key aspects are examined: marginal
distribution similarity and dependency preservation.

Marginal Distribution Similarity

Marginal distribution similarity evaluates whether
individual feature distributions in the synthetic data
align with those of the real data. For each attribute,
probability density functions for continuous variables
and normalized frequency histograms for categorical
variables were computed and compared.

Across all evaluated datasets, the proposed
framework demonstrates strong alignment between
real and synthetic marginal distributions. As illustrated
in Figure 1, the synthetic data closely follows the shape,
central tendency, and dispersion of the original data
distributions. Minor deviations are observed at extreme
tails, particularly under stricter privacy budgets, which is
consistent with the expected impact of noise injection
under differential privacy constraints (Dwork et al., 2006;
Dwork & Roth, 2014).

Compared with baseline private synthesis
approaches, the probabilistic generative models
exhibit substantially lower distributional distortion.
This improvement can be attributed to their ability
to model joint distributions rather than relying solely
on independent attribute perturbation, as previously
observed in Bayesian and GAN-based synthesis
methods (Zhang et al., 2017; Xu et al., 2019).

Comparison of selected feature distributions
between real and synthetic datasets, demonstrating
close alignment under moderate privacy budgets.

Dependency Preservation

Beyond marginal statistics, preserving inter-attribute
dependencies is critical for downstream analytical
validity. Dependency preservation was assessed using
pairwise correlation matrices computed for both real
and synthetic datasets.

As shown in Figure 2, the synthetic data generated
by the proposed framework retains the majority of
correlation structures present in the original data. Strong
positive and negative correlations are consistently
reproduced, while weaker correlations exhibit mild
attenuation as privacy constraints become tighter.
This attenuation effect is expected, as differential
privacy mechanisms introduce stochasticity that
disproportionately affects low-signal dependencies
(Hardt et al., 2012; Ping et al., 2017).
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Figure 1: Marginal distribution comparison

Importantly, probabilistic models such as VAEs
and GAN-based approaches outperform simpler
private release mechanisms in capturing higher-
order dependencies. These findings align with prior
evaluations of synthetic data quality in sensitive
domains such as healthcare (Vallevik et al., 2024).

Heatmap comparison of pairwise correlations for real
and synthetic datasets, highlighting strong structural
similarity.

Privacy-Utility Trade-off Analysis
The privacy-utility trade-off was analyzed by varying
the privacy budget € and measuring downstream task
performance using synthetic data. Utility was quantified
using predictive accuracy for classification tasks and
mean squared error for regression tasks.

Figure 3 illustrates the relationship between privacy
budget and utility. As expected, utility improves

monotonically with increasing ¢, reflecting reduced
noise injection and higher data fidelity. Under strict
privacy constraints, a moderate degradation in utility is
observed, particularly for complex downstream tasks.
However, the decline is gradual rather than abrupt,
indicating that the proposed framework effectively
balances privacy and usefulness.

Compared to baseline differentially private generative
models, the proposed approach consistently achieves
higher utility for equivalent privacy budgets. This result
is consistent with prior work demonstrating the benefits
of advanced privacy accounting techniques such as
Rényi Differential Privacy and moments accounting
(Mironov, 2017; Wang et al., 2019; Abadi et al., 2016).

Utility performance of downstream tasks as a
function of the differential privacy budget ¢.

Comparative Model Performance

A comparative evaluation was conducted across
multiple probabilistic generative models under identical
privacy constraints. The models include differentially
private Bayesian networks, VAE-based generators, and
GAN-based approaches such as DP-GAN and PATE-GAN.

Table 2 summarizes the results in terms of statistical
fidelity, downstream utility, and privacy robustness.
GAN-based models achieve the highest marginal
distribution fidelity, particularly for complex, non-linear
data distributions. VAE-based models demonstrate
more stable training behavior and competitive utility
under moderate privacy budgets. Bayesian network
models perform well on low-dimensional datasets
but exhibit scalability limitations as dimensionality
increases, consistent with earlier findings (Zhang et al.,
2017; Jordon et al., 2018; McKenna et al., 2021).

Correlation Heatmaps: Real vs Synthetic Data
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Figure 2: Correlation heatmaps
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Privacy Budget versus Utility Curve

Utility Performance
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Figure 3: Privacy budget versus utility curve

Overall, the proposed framework achieves the most
balanced performance, combining high fidelity with
strong privacy guarantees and robustness across
datasets.

Comparison of probabilistic generative models in
terms of statistical fidelity, downstream utility, and
privacy robustness at fixed privacy budget (€ = 1.0).

Table Notes

«  Distribution similarity is measured using normalized
statistical distance metrics, where higher values
indicate closer alignment with real data.

«  Correlation error represents the average absolute
difference between real and synthetic pairwise
correlations.

- Downstream utility is reported as predictive
accuracy averaged across benchmark tasks.

«  Membership inference risk is measured as attack
accuracy, where values closer to 0.50 indicate
random guessing.

«  Allmodels are evaluated under the same differential
privacy budget (€ = 1.0) using comparable privacy
accounting methods.

Attack Resistance Results

To evaluate privacy robustness, membership inference
attacks were conducted against models trained on
synthetic data. Attack success was measured using

inference accuracy and advantage over random
guessing.

Results indicate that synthetic datasets generated
under strict differential privacy budgets substantially
reduce vulnerability to membership inference attacks.
Attack accuracy remains close to random baseline levels,
confirming that the presence or absence of individual
records cannot be reliably inferred. These findings are
consistent with theoretical guarantees provided by
differential privacy and empirical observations in prior
studies (Shokri et al., 2017; Rosenblatt et al., 2020).

In contrast, non-private and weakly private
generative models exhibit significantly higher attack
success rates, highlighting the importance of formal
privacy guarantees. The results reinforce the conclusion
that statistical fidelity alone is insufficient without
rigorous privacy mechanisms, a concern emphasized
in recent surveys on privacy-preserving data synthesis
(Hu et al., 2024).

DiscussionN

This section discusses the empirical findings of the
study, situates them within the existing body of research
on privacy-preserving synthetic data generation, and
highlights their practical significance and limitations.
The discussion focuses on the effectiveness of privacy
guarantees, the preservation of statistical fidelity, and
the broader implications for real-world data sharing.

Interpretation of Results

Privacy Effectiveness

The experimental results demonstrate that probabilistic
generative models integrated with formal differential
privacy mechanisms can provide strong and quantifiable
privacy guarantees while enabling synthetic data
release. Across all evaluated models, the enforcement
of differential privacy successfully limited information
leakage, as evidenced by the bounded privacy loss
parameters and the observed resistance to membership

Table 2: Model comparison under identical privacy constraints

Statistical Fidelity

Dependency Preservation

Downstream Utility Membership Inference

Model (Distribution Similarity T)  (Correlation Error 1) (Accuracy 1) Risk (Attack Accuracy 1) Scalability
Bayesian Network Moderate (0.78) Moderate (0.21) Moderate (0.74) Low (0.53) Limited
(PrivBayes)

DP-VAE High (0.83) High (0.18) High (0.79) Very Low (0.51) Good
DP-GAN Very High (0.87) High (0.16) High (0.81) Low (0.52) Moderate
PATE-GAN High (0.85) Moderate (0.19) Moderate (0.77) Very Low (0.50) Limited
Proposed Framework Very High (0.89) Very High (0.14) Very High (0.84) Very Low (0.50) Good
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inference attacks. This aligns with the theoretical
foundations of differential privacy, which ensure that
the inclusion or exclusion of any single record has a
limited influence on the output distribution (Dwork et
al., 2006; Dwork & Roth, 2014).

The use of advanced privacy accounting techniques,
particularly Rényi Differential Privacy, enabled tighter
tracking of cumulative privacy loss during model
training. This resulted in more effective utilization of
the privacy budget compared to classical composition
methods, confirming prior findings that Rényi-based
accounting provides stronger guarantees for iterative
learning algorithms (Mironov, 2017; Wang et al., 2019).
Models trained with carefully calibrated noise exhibited
significantly reduced vulnerability to inference attacks,
supporting earlier observations that differentially
private training mitigates adversarial risks inherent in
machine learning systems (Abadi et al., 2016; Shokri et
al., 2017).

Overall, the results indicate that probabilistic
generative models, when combined with principled
privacy mechanisms, can achieve privacy effectiveness
that is both theoretically sound and empirically
verifiable.

Fidelity Preservation

In addition to privacy protection, the results show
that the proposed framework preserves a substantial
degree of statistical fidelity. Synthetic datasets
closely approximated the marginal distributions and
pairwise correlations of the original data, particularly
under moderate privacy budgets. This suggests that
probabilistic modeling of joint distributions enables the
retention of essential statistical properties even in the
presence of injected noise.

Bayesian network-based approaches demonstrated
strong performance in preserving structured
dependencies, consistent with prior work showing their
effectiveness for tabular data synthesis under privacy
constraints (Zhang et al., 2017). Variational Autoencoder-
based models exhibited robust marginal distribution
alignment, reflecting their capacity to learn compact
latent representations of complex data distributions
(Kingma & Welling, 2013; Rezende & Mohamed, 2015).
GAN-based approaches, particularly conditional
GANs, achieved competitive fidelity for mixed-type
data but showed greater sensitivity to privacy noise,
corroborating observations reported in earlier studies
(Goodfellow et al., 2014; Xu et al., 2019).

These findings highlight the inherent trade-off
between privacy and utility, while also demonstrating
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that careful model selection and privacy budget
allocation can mitigate fidelity degradation.

Comparison with Prior Work

Compared to earlier privacy-preserving data release
methods that rely on direct perturbation or histogram-
based techniques, the proposed approach offers
superior scalability and expressiveness. Classical
algorithms for private data release often struggle with
high-dimensional data and complex dependencies,
leading to significant utility loss (Hardt et al., 2012). In
contrast, probabilistic generative models learn global
data distributions, enabling more realistic synthetic
outputs.

When compared with established systems such
as PrivBayes and DataSynthesizer, the results show
comparable or improved fidelity under similar privacy
constraints, particularly in capturing higher-order
relationships (Zhang et al., 2017; Ping et al., 2017).
Furthermore, the framework aligns with recent large-
scale efforts in differentially private synthetic data
generation, such as those developed for the NIST
competition, while offering greater flexibility in model
selection and evaluation (McKenna et al., 2021).

Relative to GAN-based privacy frameworks such
as PATE-GAN and DP-GAN, the proposed approach
demonstrates more stable privacy-utility behavior,
especially when advanced accounting mechanisms are
employed (Jordon et al., 2018; Xie et al., 2018). These
results are consistent with recent survey-level analyses
that emphasize the importance of unified evaluation
across privacy, fidelity, and attack resistance dimensions
(Hu et al., 2024).

Practical Implications

Data Sharing Scenarios
The findings of this study have direct implications for
privacy-sensitive data sharing across multiple domains. In
healthcare, synthetic data generated with formal privacy
guarantees can support clinical research, algorithm
development, and cross-institutional collaboration
without exposing patient-level information, addressing
concerns highlighted in recent quality assessment
frameworks (Vallevik et al., 2024). Similarly, in finance and
government analytics, synthetic datasets can enable
transparency and innovation while complying with
regulatory requirements.

The demonstrated balance between privacy and
fidelity suggests that probabilistic generative models
can serve as a viable alternative to restricted data access

Journal of Data Analysis and Critical Management, Volume 01, Issue 4 (2025) 91



Probabilistic Generative Models for Synthesizing Privacy-Preserving Big Data with Statistical Fidelity Guarantees

models, facilitating broader data availability for research
and development.

Deployment Considerations

From a deployment perspective, the results emphasize
theimportance of selecting appropriate privacy budgets
and model architectures based on the intended use
case. Excessively strict privacy parameters can lead to
unnecessary utility degradation, while overly permissive
settings may undermine trust in the released data.
Organizations deploying synthetic data systems must
therefore align privacy configurations with regulatory
standards and risk tolerance levels.

Additionally, the computational cost of training
differentially private generative models should be
considered, particularly for large datasets. Efficient
privacy accounting and scalable training strategies are
critical for real-world adoption, as highlighted in prior
applied evaluations of private synthetic data systems
(Rosenblatt et al., 2020).

LIMITATIONS

Scalability

Despite promising results, scalability remains a key
limitation. Training probabilistic generative models with
differential privacy introduces additional computational
overhead due to gradient clipping, noise injection,
and privacy accounting. While recent advances have
improved scalability, performance can still degrade
for very large datasets or frequent retraining scenarios
(Abadi et al., 2016; McKenna et al., 2021).

High-Dimensional Data

Another limitation arises in high-dimensional settings.
As dimensionality increases, accurately modeling
complex dependencies becomes more challenging, and
the impact of privacy noise is amplified. This can lead to
reduced fidelity, particularly for rare categories or weak
correlations. These challenges are well documented
in prior work on private data synthesis and highlight
the need for future research on adaptive modeling
strategies and dimensionality reduction techniques (Hu
et al., 2024; Vallevik et al., 2024).

ConcLusioN AND FuTure WoRK

Summary of Findings

This study investigated the role of probabilistic
generative models in synthesizing privacy-preserving
big data while maintaining strong statistical fidelity
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guarantees. Through a systematic examination of
Bayesian networks, variational autoencoders, and
generative adversarial networks integrated with
differential privacy mechanisms, the work demonstrated
that synthetic data generation can serve as a viable
alternative to direct data release in privacy-sensitive
environments.

The experimental results showed that, when properly
calibrated, differentially private generative models are
capable of preserving key statistical properties of the
original data, including marginal distributions and
correlation structures, while significantly reducing the
risk of privacy leakage. The analysis further highlighted
the inherent trade-off between privacy protection and
data utility, confirming that tighter privacy budgets
lead to measurable degradation in downstream task
performance. However, this degradation was not
uniform across model classes, with probabilistic models
exhibiting varying levels of robustness under identical
privacy constraints.

Additionally, the evaluation against membership
inference attacks demonstrated that incorporating
formal differential privacy guarantees substantially
improves resistance to adversarial exploitation
compared to non-private generative approaches.
These findings collectively confirm that privacy-
preserving synthetic data generation, when grounded in
probabilistic modeling and rigorous privacy accounting,
can achieve a balanced compromise between data
usability and privacy protection.

Contributions to Privacy-Preserving Data
Synthesis

This research makes several important contributions to
the field of privacy-preserving data synthesis.

First, it provides a unified methodological perspective
that bridges probabilistic generative modeling with
formal differential privacy frameworks. By jointly
considering privacy guarantees, statistical fidelity, and
adversarial robustness, the study moves beyond single-
metric evaluations that dominate much of the existing
literature.

Second, the work offers a structured comparison
of multiple generative paradigms under consistent
privacy constraints. This comparative analysis clarifies
the strengths and limitations of Bayesian, VAE-based,
and GAN-based approaches, thereby providing practical
guidance for selecting appropriate models based on
application requirements and risk tolerance.

Third, the study emphasizes comprehensive
evaluation strategies that integrate statistical similarity

9
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metrics, downstream utility assessments, and attack-
based privacy tests. This multidimensional evaluation
framework contributes to improving trust and
transparency in synthetic data systems, particularly in
high-stakes domains such as healthcare, finance, and
public policy analytics.

Finally, the research contributes empirical evidence
supporting the feasibility of deploying differentially
private synthetic data as a regulatory-compliant data
sharing mechanism. By demonstrating that meaningful
analytical insights can be preserved without exposing
sensitive individual records, the study reinforces
synthetic data generation as a foundational tool for
responsible data science.

Directions for Future Research

Despite its contributions, this work also reveals several
promising directions for future research.

One important avenue is the scalability of privacy-
preserving generative models to extremely high-
dimensional and large-scale datasets. As real-world data
continue to grow in complexity, future studies should
investigate model architectures and optimization
techniques that maintain both privacy guarantees and
statistical fidelity at scale.

Another direction involves adaptive privacy
budgeting strategies. Rather than allocating a fixed
privacy budget uniformly across the training process,
future research could explore data-dependent or task-
aware budget allocation mechanisms that optimize
utility while respecting global privacy constraints.

Further work is also needed to address robustness
against emerging privacy attacks. While membership
inference was considered in this study, future research
should incorporate broader threat models, including
attribute inference and model inversion attacks,
particularly in adversarial deployment settings.

Additionally, integrating privacy-preserving synthetic
data generation with federated and distributed learning
paradigms represents a promising research frontier.
Such integration could enable collaborative data
analysis across institutions without centralized data
sharing, thereby strengthening privacy guarantees
while expanding analytical capabilities.

Finally, future studies should focus on developing
standardized benchmarks and evaluation protocols for
synthetic data quality and trustworthiness. Establishing
widely accepted assessment frameworks would
facilitate fair comparison across methods and accelerate
the adoption of privacy-preserving synthetic data in
practice.

9

REFERENCES

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006, March).
Calibrating noise to sensitivity in private data analysis.
In Theory of cryptography conference (pp. 265-284).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative
adversarial nets. Advances in neural information
processing systems, 27.

Xu, L., Skoularidou, M., Cuesta-Infante, A., & Veeramachaneni,
K. (2019). Modeling tabular data using conditional
gan.Advancesin neural information processing systems, 32.

McSherry, F., & Talwar, K. (2007, October). Mechanism design
via differential privacy. In 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS'07) (pp. 94-103).
IEEE.

Abadi, M., Chu, A., Goodfellow, I, McMahan, H. B., Mironov,
I, Talwar, K., & Zhang, L. (2016, October). Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security (pp. 308-318).

Mironov, I. (2017, August). Rényi differential privacy. In 2017
IEEE 30th computer security foundations symposium
(CSF) (pp. 263-275). IEEE.

Wang, Y. X., Balle, B., & Kasiviswanathan, S. P. (2019, April).
Subsampled rényi differential privacy and analytical
moments accountant. In The 22nd international
conference on artificial intelligence and statistics (pp.
1226-1235). PMLR.

Hardt, M., Ligett, K., & McSherry, F. (2012). A simple and
practical algorithm for differentially private data
release. Advances in neural information processing
systems, 25.

Zhang, J., Cormode, G., Procopiuc, C. M., Srivastava, D., & Xiao,
X. (2017). Privbayes: Private data release via bayesian
networks. ACM Transactions on Database Systems
(TODS), 42(4), 1-41.

Ping, H., Stoyanovich, J.,, & Howe, B. (2017, June).
Datasynthesizer: Privacy-preserving synthetic datasets.
In Proceedings of the 29th International Conference on
Scientific and Statistical Database Management (pp. 1-5).

McKenna, R., Miklau, G., & Sheldon, D. (2021). Winning
the NIST contest: A scalable and general approach
to differentially private synthetic data. arXiv preprint
arXiv:2108.04978.

Dwork, C., & Roth, A. (2014). The algorithmic foundations
of differential privacy. Foundations and trends® in
theoretical computer science, 9(3-4), 211-407.

Jordon, J., Yoon, J., & Van Der Schaar, M. (2018, September).
PATE-GAN: Generating synthetic data with differential
privacy guarantees. In International conference on
learning representations.

Xie, L. Lin, K., Wang, S., Wang, F., & Zhou, J. (2018). Differentially
private generative adversarial network. arXiv preprint
arXiv:1802.06739.

Journal of Data Analysis and Critical Management, Volume 01, Issue 4 (2025) 93



Probabilistic Generative Models for Synthesizing Privacy-Preserving Big Data with Statistical Fidelity Guarantees

Rosenblatt, L., Liu, X., Pouyanfar, S., de Leon, E., Desai, A., Vallevik,V.B.,Babic, A.,Marshall, S.E., Elvatun, S., Bragger,H. M.,

& Allen, J. (2020). Differentially private synthetic data: Alagaratnam, S., ...&Nygard, J. F.(2024). Cani trust my fake
Applied evaluations and enhancements. arXiv preprint data—a comprehensive quality assessment framework
arXiv:2011.05537. for synthetic tabular data in healthcare. International

Rezende, D., & Mohamed, S. (2015, June). Variational inference Journal of Medical Informatics, 185, 105413.
with normalizing flows. In International conference on  Kingma, D. P, & Welling, M. (2013). Auto-encoding variational
machine learning (pp. 1530-1538). PMLR. bayes. arXiv preprint arXiv:1312.6114.

Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017, May). Hu, Y., Wu, F, Li, Q,, Long, Y., Garrido, G. M., Ge, C,, ... & Song,
Membership inference attacks against machine learning D. (2024, May). Sok: Privacy-preserving data synthesis.
models. In 2017 IEEE symposium on security and privacy In 2024 IEEE Symposium on Security and Privacy (SP)
(SP) (pp. 3-18). IEEE. (pp. 4696-4713). IEEE.

94 Journal of Data Analysis and Critical Management, Volume 01, Issue 4 (2025) m



