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ABSTRACT

The introduction of the Internet of Things (loT) in the medical field has enabled the real-time monitoring of patients,
the individual diagnosis of patients, and better clinical decisions. But, large scale sharing of sensitive health data raises
significant privacy and security concerns. GenAl is an emerging approach to the generation of synthetic information that
is both statistically useful and that does not compromise patient privacy. The paper discusses the potential of applying
GenAl-based synthetic data generation to the smart healthcare loT ecosystems, with a particular focus on its integration
with federated learning to enhance the privacy protection and system security. We suggest a conceptual framework that
combines federated learning and GenAl models- e.g., Variational Autoencoders (VAEs) and Generative Adversarial Networks
(GANSs) to create high-fidelity synthetic datasets to train diagnostic models, simulate clinical scenarios, and reinforce loT
security. The paper also touches on the ethical and regulatory implications of using synthetic data in healthcare, such
as the necessity to comply with privacy laws and regulations across the globe, including HIPAA and GDPR. We find that
GenAl-based synthetic data can be deployed to reduce privacy risks and facilitate robust cybersecurity practices in smart
healthcare loT systems, and to facilitate privacy-preserving data-driven innovation.
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INTRODUCTION

he rapid evolution of the Internet of Things (loT) has

transformed the healthcare industry by continuously
monitoring patients, diagnosing them remotely,
and treating them individually. The smart healthcare
systems are now integrating the interconnected medical
devices, wearable sensors, and cloud-based systems
to collect and process large amounts of physiological
and behavioral data. Al applications, including disease
prediction, anomaly detection, and clinical decision
support, can be applied to such data streams with the
potential to improve healthcare outcomes, reduce costs,
and enhance operational efficiency.

Despite these numerous advantages, the amount
of sensitive health data that is being gathered and
shared is an enormous privacy and security risk. The loT
devices are resource constrained, distributed, and are
vulnerable to cyberattacks, which makes them prone
to data breaches, unauthorized access, and patient
re-identification. The leakage of medical data not
only infringes the privacy of patients but also erodes
the confidence in the digital healthcare solutions.
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Ensuring that smart healthcare loT solutions are privacy
compliant with privacy laws such as the Health Insurance
Portability and Accountability Act (HIPAA) and the
General Data Protection Regulation (GDPR) is therefore
a significant challenge to the mainstream adoption of
smart healthcare loT solutions.

LiTERATURE REVIEW

Smart Healthcare loT Systems and Privacy
Challenges

The use of loT in healthcare has facilitated constant
monitoring, distant diagnostics, and individual
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treatment with the help of wearable sensors, medical
devices, and cloud-based infrastructures. Patient data
generated by such systems are high-volume and high-
velocity physiological signals, medication records, and
environmental parameters that can be used in Al-driven
analytics (Li et al,, 2017; Islam et al., 2015). Nevertheless,
the transfer and storage of these sensitive data sets
pose a significant privacy and security risk. The loT
devices are resource-limited, distributed, and usually
lack strong protection, which makes them highly
vulnerable to cyberattacks, unauthorized access, and
data leakage (Zhang et al., 2019; Khan & Salah, 2018).
Such difficulties demonstrate the inability of traditional
security measures to safeguard healthcare data without
compromising the performance of the system.

Synthetic Data Generation for Privacy
Preservation

Synthetic data have been suggested as a possible
solution to the privacy issue that still allows the
statistical usefulness of medical data. Methods based on
Generative Adversarial Networks (GANs) (Goodfellow et
al., 2014) and Variational Autoencoders (VAEs) (Kingma &
Welling, 2013) have shown that it is possible to generate
high-fidelity synthetic health records. As an example,
Choi et al. (2017) demonstrated that medical GANs
could be used to train predictive models on electronic
health records (EHRs) without revealing identifiers, and
Beaulieu-Jones et al. (2019) pointed out the possible
use of VAEs to generate synthetic datasets to be used
in downstream machine learning tasks.

Although these developments have been made,
there are still concerns about the privacy assurances
of synthetic data. Yale et al. (2020) demonstrated that
synthetic data may contain hidden statistical patterns
that can be used, under adversarial circumstances, to
re-identify patients. Furthermore, the majority of the
available studies have concentrated on centralized EHR
data and the usability of synthetic data generation in
distributed loT settings is understudied.

Federated Learning for Decentralized Data
Protection

Federated learning has become a promising privacy-
preserving machine learning paradigm. Federated
learning also enables training local models on distributed
devices without sharing raw data, which dramatically
lowers the risks of centralized storage (McMahan et
al., 2017). In the healthcare sector, this method can
be used to achieve cross-institutional collaboration,
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where hospitals and loT devices can collaborate to train
models without violating data protection laws (Sheller
etal., 2020).

Some works have used federated learning and
GenAl together to further increase privacy protection.
As an example, Xu et al. (2021) suggested a federated-
GAN model to create synthetic data across institutions.
Nonetheless, the majority of these applications are
confined to the hospital network or cloud-based
environments, and do not consider the specifics of
loT healthcare environments, including resource
constraints, intermittent connectivity, and device-level
vulnerabilities (Zhao et al., 2021).

GenAl for loT Security and Threat Simulation

GenAl has also been applied to model and reduce
cybersecurity threats in the loT. Generative models can
be used to model new attack patterns, and can be used
to construct stronger intrusion detection and anomaly
detection systems. Lin et al. (2020) demonstrated that
GANSs can be applied to model adversarial attacks, which
increases the resilience of loT security mechanisms.
The threat simulation and the healthcare IoT systems
are, however, sophisticated in combination, posing
computational efficiency and regulatory compliance
issues.

Ethical and Regulatory Considerations

The ethical deployment of GenAl in healthcare
loT requires adherence to principles of fairness,
accountability,and transparency. Regulatory frameworks
such as HIPAA in the United States and GDPR in Europe
mandate stringent controls over health data usage
and sharing (Rieke et al., 2020). Scholars, including
Leslie (2019), emphasize the need for responsible Al
design that mitigates risks of bias, inequality, and loss
of trust in healthcare systems. Recent works (Sharma
et al,, 2023; Zhao & Liang, 2024; Akhtar et al., 2024)
highlight emerging concerns such as bias propagation
in synthetic datasets and the need for interdisciplinary
approaches to establish robust ethical guidelines.

METHODOLOGY

In this article, we suggest a conceptual framework that
integrates Generative Artificial Intelligence (GenAl)
with federated learning to enhance privacy, utility,
and security of smart healthcare loT systems. The
methodology is an amalgamation of architecture
design, simulation-based experimentation and multi-
dimensional evaluation.

Journal of Data Analysis and Critical Management, Volume 01, Issue 3 (2025) 59



Synthetic Data Generation with GenAl for Privacy-Preserving Smart Healthcare IoT Systems

Framework Design

The proposed framework is organized into three
functional layers:

« loT Device Layer

- Composed of wearable and implantable sensors
(e.g., heart rate monitors, glucose sensors) and
edge devices that collect physiological and
environmental patient data.

- Data are preprocessed locally to extract diagnostic
features, thereby minimizing raw data transmission.

Federated Learning Layer

« Enables decentralized training of machine learning
models across loT devices and institutional servers.

«  Model parameters are periodically aggregated by a
central coordinator without sharing raw data.

« Privacy is reinforced through encryption and
optional differential privacy mechanisms.

GenAl Synthetic Data Layer

« Employs generative models such as GANs and VAEs
to produce high-fidelity synthetic patient data that
mimic real data distributions.

+ Synthetic datasets are used to:
«  Augment federated learning training sets.
+  Benchmark diagnostic and anomaly detection

models.

«  Simulate cyberthreats for loT security evaluation.
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Figure 1: Proposed framework integrating GenAl with
federated learning for smart healthcare IoT systems
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This multi-layered framework balances data utility,
computational efficiency, and privacy preservation.

Synthetic Data Generation

Two GenAl models are implemented and compared:

« Generative Adversarial Networks (GANs): A
generator network creates synthetic data, while
a discriminator network distinguishes real from
synthetic samples. Both networks are trained
adversarially until the generator produces realistic
outputs.

» Variational Autoencoders (VAEs): A probabilistic
generative model that learns latent representations
of real data and reconstructs them into synthetic
datasets.

Some of the main processing steps that are required
are normalization, anonymization, and statistical
verification so that synthetic data products are similar
to the original data in important aspects. Raw patient
data may be localized and kept to comply with privacy
regulations, however simulations are performed using
open-access datasets such as MIMIC-III.

Federated Learning Implementation

A federated learning environment is established with

the following workflow:

« Initialization: A central server broadcasts initial
model parameters to participating clients.

» Local Training: Each client (loT device or institution)
trains the model on its local dataset (real or
synthetic).

« Parameter Updates: Clients send encrypted model
updates to the server.

» Aggregation: The server aggregates updates (e.g.,
weighted averaging) to produce a global model.

» Iterations: The process repeats until convergence.
Optional differential privacy is applied by adding

noise to local updates before transmission, further

reducing risks of information leakage.

Evaluation Metrics
The framework is evaluated across four dimensions:

Data Utility

. Statistical similarity of real vs. synthetic data (e.g.,
means, correlations, distribution overlap).

«  Model performance (accuracy, precision, recall,
F1-score) when trained on real, synthetic, and hybrid
datasets.

Privacy Preservation

« Membership inference attacks to measure
re-identification risk.
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Differential privacy scores to quantify robustness

Computational efficiency

« Training time and resource requirements for GenAl
models.

- Bandwidth and latency in federated learning
communication.

Security Enhancement

« Improved anomaly detection performance using
synthetic threat data.

« Reduction in false positive rates for intrusion
detection.

Implementation Tools

The framework leverages widely used deep learning

and federated learning platforms:

« GenAl Models: TensorFlow and PyTorch for
implementing GANs and VAEs.

« Federated Learning: TensorFlow Federated and
Flower frameworks for distributed training.

- Data Sources: Publicly available healthcare loT
datasets (e.g., MIMIC-III).

« Simulation Environment: Synthetic security logs to
emulate loT threat scenarios (Dias B.L., 2025).

Data Utility Analysis

To confirm the validity of generated data, statistical tests
were performed between actual and generated data.
The Table 1 shows the mean and standard deviation
of some physiological characteristics. There were no
statistically significant differences (p > 0.05), which
means that synthetic datasets were able to maintain
distributional characteristics of real data.

Visual comparison of feature distributions (Fig.
1) further confirms high overlap between real and
synthetic datasets.

Model Performance Analysis

Diagnostic models were trained on real, synthetic,
and combined datasets in the federated learning

Table 1: Statistical Summary of Real vs. Synthetic Data

Feature Real Data Synthetic Data value
(Mean + SD) (Mean + SD) P

HeartRate 72.4+10.5 71.8+10.2 0.43

(bpm)

Glucose 1103+158 109.7+15.2 0.51

(mg/dL)

Sp0, (%) 975+1.6 973+15 0.38
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Comparison of Real vs. Synthetic Data
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Figure 1: Statistical Summary of Real vs. Synthetic Data

architecture. Table 2 results indicate that the accuracy of
models trained on synthetic data alone was competitive
(90.1%) to that of real data (92.5%). The best performance
(93.2%) was achieved by combining real and synthetic
datasets, suggesting that synthetic data may improve
model generalisation.

Correlation heatmaps (Fig. 2) illustrate the similarity
between real and synthetic data relationships, further
supporting data utility.

Privacy Preservation Analysis
The resilience of the framework to re-identification
was evaluated via membership inference attacks. As
illustrated in Table 3, models trained using synthetic
data had a lower attack success rate (52%) than the
real data models (65%). When federated learning
and synthetic data were used together, the success
rate decreased even more to 48%, which proves the
increased privacy protection.

Figure 3 illustrates the privacy risk reduction
achieved through the combined approach.

loT Security Enhancement Analysis

To assess the aspect of security, GenAl-generated
synthetic threat data were incorporated into intrusion
detection systems. Models trained on both real and

Table 2: Model Performance Metrics

Training

Accuracy  Precision  Recall ~ F1-Score
data
Real Data 92.5% 91.8% 93.0%  92.4%
Only
Synthetic 90.1% 89.5% 90.7%  90.1%
Data Only
Real + 93.2% 92.6% 93.8%  93.2%
Synthetic
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Model Performance Comparison
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Figure 2: Model Performance Metrics

Table 3: Membership Inference Attack Success Rate

Dataset type Attack success rate
Real Data Models 65%
Synthetic Data Models 52%
Federated + Synthetic 48%

synthetic threat datasets performed better in terms of
detection rate (91%) and false positives (5%) than models
trained on real threats alone as shown in Table 4.

DiscussionN

This paper shows that the combination of GenAl
and federated learning can be an effective solution
to privacy-preserving smart healthcare loT systems.
The experimental results point at three important
contributions.

Second, synthetic datasets created using GANs and
VAEs were found to closely resemble the statistical
features of actual healthcare data. Models trained only
on synthetic data performed slightly worse than those
trained on real datasets but still had a high utility. More
importantly, the combination of synthetic and real
data increased the performance of diagnostic models,
indicating that synthetic data can alleviate overfitting
and increase the generalization of models.

Second, the suggested framework minimized
the privacy risks. Membership inference attack tests
showed that synthetic data reduced the likelihood
of re-identification relative to the real data models.
Federated learning enhanced by synthetic data also
enhanced privacy, which is one of the main obstacles to
the implementation of loT-enabled healthcare systems.

Third, the GenAl-generated synthetic threat data
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Privacy Risk Reduction with Synthetic Data and Federated Learning
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Figure 3: Membership Inference Attack Success Rate

Table 4: Intrusion Detection Performance

Training data Zetiection f;zge positive
Real Threat Data Only 88% 7%
Synthetic Threat Data 85% 6%
Real + Synthetic Threat  91% 5%

These results confirm that synthetic threat data improve the
robustness of anomaly detection systems in loT-enabled
healthcare.

enhanced the intrusion detection in loT environments.
The addition of synthetic threat scenarios to real
security logs showed anincrease in detection rates and
a decrease in false positives, proving the potential of
generative models in proactive cybersecurity defense.

These findings support previous studies that
promote synthetic data as a privacy-preserving
alternative (Choi et al., 2017; Beaulieu-Jones et al., 2019)
and expand on them by showing its applicability in
loT where federated learning is used. In contrast to
previous research on GenAl and federated learning, this

Intrusion Detection Performance
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Figure 4: Intrusion Detection Performance
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paper focuses on the synergetic advantages of the two
approaches and presents empirical data on the value of
their combination.

However, there are a few obstacles. Synthetic
data can still carry underlying biases of training data,
which may further increase healthcare disparities.
Federated learning computational overhead on
resource-constrained loT devices also requires further
optimization. Lastly, although the framework is
conceptually compliant with privacy regulations, it
will be necessary to rigorously validate the framework
against legal and ethical standards across jurisdictions
in practice.

CONCLUSION

This paper proposed a GenAl-federated learning
framework to privacy-preserving smart healthcare loT
systems. The framework addresses three key issues
in data utility, patient privacy, and loT cybersecurity,
through the creation of high-fidelity synthetic
datasets and incorporation of decentralized training.
Experimental evaluation indicated that:

« Sensitive information is not shared, however
synthetic data is fairly similar to real healthcare data.

« The use of real and synthetic data increases the
accuracy and generalization of the diagnostic
models.

« Federated learning reduces the threat of privacy
leakage, particularly to inference attacks.

+ Intrusion detection can be enhanced by the use of
synthetic threat data to reduce the false positive
rate in loT systems.

The combination of these findings suggests that
GenAl and federated learning can unlock scalable,
privacy-aware, and secure smart healthcare solutions.

Future work will be on applying the framework to
live healthcare loT data, generalizing the synthetic data
generation to multimodal data (e.g., images, text, sensor
streams), and integrating formal differential privacy
guarantees. Also, interdisciplinary research is required
to resolve ethical issues like algorithmic bias and
compliance with regulations, so that next-generation
healthcare systems are not only technologically sound
but also socially responsible.
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