
Ab s t r ac t
The introduction of the Internet of Things (IoT) in the medical field has enabled the real-time monitoring of patients, 
the individual diagnosis of patients, and better clinical decisions. But, large scale sharing of sensitive health data raises 
significant privacy and security concerns. GenAI is an emerging approach to the generation of synthetic information that 
is both statistically useful and that does not compromise patient privacy. The paper discusses the potential of applying 
GenAI-based synthetic data generation to the smart healthcare IoT ecosystems, with a particular focus on its integration 
with federated learning to enhance the privacy protection and system security. We suggest a conceptual framework that 
combines federated learning and GenAI models- e.g., Variational Autoencoders (VAEs) and Generative Adversarial Networks 
(GANs) to create high-fidelity synthetic datasets to train diagnostic models, simulate clinical scenarios, and reinforce IoT 
security. The paper also touches on the ethical and regulatory implications of using synthetic data in healthcare, such 
as the necessity to comply with privacy laws and regulations across the globe, including HIPAA and GDPR. We find that 
GenAI-based synthetic data can be deployed to reduce privacy risks and facilitate robust cybersecurity practices in smart 
healthcare IoT systems, and to facilitate privacy-preserving data-driven innovation.
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In t r o d u c t i o n

The rapid evolution of the Internet of Things (IoT) has 
transformed the healthcare industry by continuously 

monitoring patients, diagnosing them remotely, 
and treating them individually. The smart healthcare 
systems are now integrating the interconnected medical 
devices, wearable sensors, and cloud-based systems 
to collect and process large amounts of physiological 
and behavioral data. AI applications, including disease 
prediction, anomaly detection, and clinical decision 
support, can be applied to such data streams with the 
potential to improve healthcare outcomes, reduce costs, 
and enhance operational efficiency.

Despite these numerous advantages, the amount 
of sensitive health data that is being gathered and 
shared is an enormous privacy and security risk. The IoT 
devices are resource constrained, distributed, and are 
vulnerable to cyberattacks, which makes them prone 
to data breaches, unauthorized access, and patient 
re-identification. The leakage of medical data not 
only infringes the privacy of patients but also erodes 
the confidence in the digital healthcare solutions. 

Ensuring that smart healthcare IoT solutions are privacy 
compliant with privacy laws such as the Health Insurance 
Portability and Accountability Act (HIPAA) and the 
General Data Protection Regulation (GDPR) is therefore 
a significant challenge to the mainstream adoption of 
smart healthcare IoT solutions.

Li t e r at u r e Re v i e w

Smart Healthcare IoT Systems and Privacy 
Challenges
The use of IoT in healthcare has facilitated constant 
monitoring, distant diagnostics, and individual 
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treatment with the help of wearable sensors, medical 
devices, and cloud-based infrastructures. Patient data 
generated by such systems are high-volume and high-
velocity physiological signals, medication records, and 
environmental parameters that can be used in AI-driven 
analytics (Li et al., 2017; Islam et al., 2015). Nevertheless, 
the transfer and storage of these sensitive data sets 
pose a significant privacy and security risk. The IoT 
devices are resource-limited, distributed, and usually 
lack strong protection, which makes them highly 
vulnerable to cyberattacks, unauthorized access, and 
data leakage (Zhang et al., 2019; Khan & Salah, 2018). 
Such difficulties demonstrate the inability of traditional 
security measures to safeguard healthcare data without 
compromising the performance of the system.

Synthetic Data Generation for Privacy 
Preservation
Synthetic data have been suggested as a possible 
solution to the privacy issue that still allows the 
statistical usefulness of medical data. Methods based on 
Generative Adversarial Networks (GANs) (Goodfellow et 
al., 2014) and Variational Autoencoders (VAEs) (Kingma & 
Welling, 2013) have shown that it is possible to generate 
high-fidelity synthetic health records. As an example, 
Choi et al. (2017) demonstrated that medical GANs 
could be used to train predictive models on electronic 
health records (EHRs) without revealing identifiers, and 
Beaulieu-Jones et al. (2019) pointed out the possible 
use of VAEs to generate synthetic datasets to be used 
in downstream machine learning tasks.

Although these developments have been made, 
there are still concerns about the privacy assurances 
of synthetic data. Yale et al. (2020) demonstrated that 
synthetic data may contain hidden statistical patterns 
that can be used, under adversarial circumstances, to 
re-identify patients. Furthermore, the majority of the 
available studies have concentrated on centralized EHR 
data and the usability of synthetic data generation in 
distributed IoT settings is understudied.

Federated Learning for Decentralized Data 
Protection
Federated learning has become a promising privacy-
preserving machine learning paradigm. Federated 
learning also enables training local models on distributed 
devices without sharing raw data, which dramatically 
lowers the risks of centralized storage (McMahan et 
al., 2017). In the healthcare sector, this method can 
be used to achieve cross-institutional collaboration, 

where hospitals and IoT devices can collaborate to train 
models without violating data protection laws (Sheller 
et al., 2020).

Some works have used federated learning and 
GenAI together to further increase privacy protection. 
As an example, Xu et al. (2021) suggested a federated-
GAN model to create synthetic data across institutions. 
Nonetheless, the majority of these applications are 
confined to the hospital network or cloud-based 
environments, and do not consider the specifics of 
IoT healthcare environments, including resource 
constraints, intermittent connectivity, and device-level 
vulnerabilities (Zhao et al., 2021).

GenAI for IoT Security and Threat Simulation
GenAI has also been applied to model and reduce 
cybersecurity threats in the IoT. Generative models can 
be used to model new attack patterns, and can be used 
to construct stronger intrusion detection and anomaly 
detection systems. Lin et al. (2020) demonstrated that 
GANs can be applied to model adversarial attacks, which 
increases the resilience of IoT security mechanisms. 
The threat simulation and the healthcare IoT systems 
are, however, sophisticated in combination, posing 
computational efficiency and regulatory compliance 
issues.

Ethical and Regulatory Considerations
The ethical deployment of GenAI in healthcare 
IoT requires adherence to principles of fairness, 
accountability, and transparency. Regulatory frameworks 
such as HIPAA in the United States and GDPR in Europe 
mandate stringent controls over health data usage 
and sharing (Rieke et al., 2020). Scholars, including 
Leslie (2019), emphasize the need for responsible AI 
design that mitigates risks of bias, inequality, and loss 
of trust in healthcare systems. Recent works (Sharma 
et al., 2023; Zhao & Liang, 2024; Akhtar et al., 2024) 
highlight emerging concerns such as bias propagation 
in synthetic datasets and the need for interdisciplinary 
approaches to establish robust ethical guidelines.

Me t h o d o lo g y
In this article, we suggest a conceptual framework that 
integrates Generative Artificial Intelligence (GenAI) 
with federated learning to enhance privacy, utility, 
and security of smart healthcare IoT systems. The 
methodology is an amalgamation of architecture 
design, simulation-based experimentation and multi-
dimensional evaluation.
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Framework Design
The proposed framework is organized into three 
functional layers:

•	 IoT Device Layer
•	 Composed of wearable and implantable sensors 

(e.g., heart rate monitors, glucose sensors) and 
edge devices that collect physiological and 
environmental patient data.

•	 Data are preprocessed locally to extract diagnostic 
features, thereby minimizing raw data transmission.

Federated Learning Layer
•	 Enables decentralized training of machine learning 

models across IoT devices and institutional servers.
•	 Model parameters are periodically aggregated by a 

central coordinator without sharing raw data.
•	 Privacy is reinforced through encryption and 

optional differential privacy mechanisms.

GenAI Synthetic Data Layer
•	 Employs generative models such as GANs and VAEs 

to produce high-fidelity synthetic patient data that 
mimic real data distributions.

•	 Synthetic datasets are used to:
•	 Augment federated learning training sets.
•	 Benchmark diagnostic and anomaly detection 

models.
•	 Simulate cyberthreats for IoT security evaluation.

This multi-layered framework balances data utility, 
computational efficiency, and privacy preservation.

Synthetic Data Generation
Two GenAI models are implemented and compared:
•	 Generative Adversarial Networks (GANs): A 

generator network creates synthetic data, while 
a discriminator network distinguishes real from 
synthetic samples. Both networks are trained 
adversarially until the generator produces realistic 
outputs.

•	 Variational Autoencoders (VAEs): A probabilistic 
generative model that learns latent representations 
of real data and reconstructs them into synthetic 
datasets.

Some of the main processing steps that are required 
are normalization, anonymization, and statistical 
verification so that synthetic data products are similar 
to the original data in important aspects. Raw patient 
data may be localized and kept to comply with privacy 
regulations, however simulations are performed using 
open-access datasets such as MIMIC-III.

Federated Learning Implementation
A federated learning environment is established with 
the following workflow:
•	 Initialization: A central server broadcasts initial 

model parameters to participating clients.
•	 Local Training: Each client (IoT device or institution) 

trains the model on its local dataset (real or 
synthetic).

•	 Parameter Updates: Clients send encrypted model 
updates to the server.

•	 Aggregation: The server aggregates updates (e.g., 
weighted averaging) to produce a global model.

•	 Iterations: The process repeats until convergence.
Optional differential privacy is applied by adding 

noise to local updates before transmission, further 
reducing risks of information leakage.

Evaluation Metrics
The framework is evaluated across four dimensions:

Data Utility
•	 Statistical similarity of real vs. synthetic data (e.g., 

means, correlations, distribution overlap).
•	 Model performance (accuracy, precision, recall, 

F1-score) when trained on real, synthetic, and hybrid 
datasets.

Privacy Preservation
•	 Membership inference attacks to measure 

re-identification risk.
Figure 1: Proposed framework integrating GenAI with 

federated learning for smart healthcare IoT systems
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Differential privacy scores to quantify robustness

Computational efficiency
•	 Training time and resource requirements for GenAI 

models.
•	 Bandwidth and latency in federated learning 

communication.

Security Enhancement
•	 Improved anomaly detection performance using 

synthetic threat data.
•	 Reduction in false positive rates for intrusion 

detection.

Implementation Tools
The framework leverages widely used deep learning 
and federated learning platforms:
•	 GenAI Models: TensorFlow and PyTorch for 

implementing GANs and VAEs.
•	 Federated Learning: TensorFlow Federated and 

Flower frameworks for distributed training.
•	 Data Sources: Publicly available healthcare IoT 

datasets (e.g., MIMIC-III).
•	 Simulation Environment: Synthetic security logs to 

emulate IoT threat scenarios.

Data Utility Analysis
To confirm the validity of generated data, statistical tests 
were performed between actual and generated data. 
The Table 1 shows the mean and standard deviation 
of some physiological characteristics. There were no 
statistically significant differences (p > 0.05), which 
means that synthetic datasets were able to maintain 
distributional characteristics of real data.

Visual comparison of feature distributions (Fig. 
1) further confirms high overlap between real and 
synthetic datasets.

Model Performance Analysis
Diagnostic models were trained on real, synthetic, 
and combined datasets in the federated learning 

architecture. Table 2 results indicate that the accuracy of 
models trained on synthetic data alone was competitive 
(90.1%) to that of real data (92.5%). The best performance 
(93.2%) was achieved by combining real and synthetic 
datasets, suggesting that synthetic data may improve 
model generalisation.

Correlation heatmaps (Fig. 2) illustrate the similarity 
between real and synthetic data relationships, further 
supporting data utility.

Privacy Preservation Analysis
The resilience of the framework to re-identification 
was evaluated via membership inference attacks. As 
illustrated in Table 3, models trained using synthetic 
data had a lower attack success rate (52%) than the 
real data models (65%). When federated learning 
and synthetic data were used together, the success 
rate decreased even more to 48%, which proves the 
increased privacy protection.

Figure 3 illustrates the privacy risk reduction 
achieved through the combined approach.

IoT Security Enhancement Analysis
To assess the aspect of security, GenAI-generated 
synthetic threat data were incorporated into intrusion 
detection systems. Models trained on both real and 

Table 1: Statistical Summary of Real vs. Synthetic Data

Feature Real Data 
(Mean ± SD)

Synthetic Data 
(Mean ± SD) p-value

Heart Rate 
(bpm)

72.4 ± 10.5 71.8 ± 10.2 0.43

Glucose 
(mg/dL)

110.3 ± 15.8 109.7 ± 15.2 0.51

SpO₂ (%) 97.5 ± 1.6 97.3 ± 1.5 0.38

Figure 1: Statistical Summary of Real vs. Synthetic Data

Table 2: Model Performance Metrics

Training 
data Accuracy Precision Recall F1-Score

Real Data 
Only

92.5% 91.8% 93.0% 92.4%

Synthetic 
Data Only

90.1% 89.5% 90.7% 90.1%

Real + 
Synthetic

93.2% 92.6% 93.8% 93.2%
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synthetic threat datasets performed better in terms of 
detection rate (91%) and false positives (5%) than models 
trained on real threats alone as shown in Table 4.

Di s c u s s i o n
This paper shows that the combination of GenAI 
and federated learning can be an effective solution 
to privacy-preserving smart healthcare IoT systems. 
The experimental results point at three important 
contributions.

Second, synthetic datasets created using GANs and 
VAEs were found to closely resemble the statistical 
features of actual healthcare data. Models trained only 
on synthetic data performed slightly worse than those 
trained on real datasets but still had a high utility. More 
importantly, the combination of synthetic and real 
data increased the performance of diagnostic models, 
indicating that synthetic data can alleviate overfitting 
and increase the generalization of models.

Second, the suggested framework minimized 
the privacy risks. Membership inference attack tests 
showed that synthetic data reduced the likelihood 
of re-identification relative to the real data models. 
Federated learning enhanced by synthetic data also 
enhanced privacy, which is one of the main obstacles to 
the implementation of IoT-enabled healthcare systems.

Third, the GenAI-generated synthetic threat data 

Figure 2: Model Performance Metrics

Table 3: Membership Inference Attack Success Rate

Dataset type Attack success rate

Real Data Models 65%

Synthetic Data Models 52%

Federated + Synthetic 48%

Figure 3: Membership Inference Attack Success Rate

Table 4: Intrusion Detection Performance

Training data Detection 
rate

False positive 
rate

Real Threat Data Only 88% 7%

Synthetic Threat Data 85% 6%

Real + Synthetic Threat 91% 5%

These results confirm that synthetic threat data improve the 
robustness of anomaly detection systems in IoT-enabled 
healthcare.

Figure 4: Intrusion Detection Performance

enhanced the intrusion detection in IoT environments. 
The addition of synthetic threat scenarios to real 
security logs showed an increase in detection rates and 
a decrease in false positives, proving the potential of 
generative models in proactive cybersecurity defense.

These findings support previous studies that 
promote synthetic data as a privacy-preserving 
alternative (Choi et al., 2017; Beaulieu-Jones et al., 2019) 
and expand on them by showing its applicability in 
IoT where federated learning is used. In contrast to 
previous research on GenAI and federated learning, this 
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paper focuses on the synergetic advantages of the two 
approaches and presents empirical data on the value of 
their combination.

However, there are a few obstacles. Synthetic 
data can still carry underlying biases of training data, 
which may further increase healthcare disparities. 
Federated learning computational overhead on 
resource-constrained IoT devices also requires further 
optimization. Lastly, although the framework is 
conceptually compliant with privacy regulations, it 
will be necessary to rigorously validate the framework 
against legal and ethical standards across jurisdictions 
in practice.

Co n c lu s i o n
This paper proposed a GenAI-federated learning 
framework to privacy-preserving smart healthcare IoT 
systems. The framework addresses three key issues 
in data utility, patient privacy, and IoT cybersecurity, 
through the creation of high-fidelity synthetic 
datasets and incorporation of decentralized training. 
Experimental evaluation indicated that:
•	 Sensitive information is not shared, however 

synthetic data is fairly similar to real healthcare data.
•	 The use of real and synthetic data increases the 

accuracy and generalization of the diagnostic 
models.

•	 Federated learning reduces the threat of privacy 
leakage, particularly to inference attacks.

•	 Intrusion detection can be enhanced by the use of 
synthetic threat data to reduce the false positive 
rate in IoT systems.

The combination of these findings suggests that 
GenAI and federated learning can unlock scalable, 
privacy-aware, and secure smart healthcare solutions.

Future work will be on applying the framework to 
live healthcare IoT data, generalizing the synthetic data 
generation to multimodal data (e.g., images, text, sensor 
streams), and integrating formal differential privacy 
guarantees. Also, interdisciplinary research is required 
to resolve ethical issues like algorithmic bias and 
compliance with regulations, so that next-generation 
healthcare systems are not only technologically sound 
but also socially responsible.
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