Journal of Data Analysis and Critical Management, Volume 01, Issue 03, 2025

Neuroadaptive DevOps: Real-Time ML-Driven Adaptation
of Deployment Pipelines in Edge Environments

Selva Kumar Ranganathan
AWS Cloud Architect, MDTHINK, Department of Human Services, Maryland USA.

ABSTRACT

The paradigm shift from centralized cloud architectures to decentralized edge computing has catalyzed a growing need
for intelligent, adaptive software deployment processes. Traditional DevOps pipelines are predominantly static and
centralized, assuming high availability of resources, low network latency, and predictable infrastructure assumptions
that often fail in volatile, resource-constrained, and context-sensitive edge environments. In this paper, we propose
Neuroadaptive DevOps, a novel framework that integrates real-time machine learning to autonomously reconfigure and
optimize DevOps workflows in edge ecosystems. Drawing inspiration from neuroadaptive systems in human cognition,
our framework is capable of learning from environmental feedback and telemetry to enable proactive decisions such as
dynamic test selection, deployment delay, pipeline rollback, or configuration tuning. We present a modular architecture
composed of telemetry sensors, prediction engines, adaptive policy modules, and execution agents. Our evaluation across
250 heterogeneous edge nodes demonstrates significant improvements in latency reduction, deployment success rates,
and resource utilization, establishing Neuroadaptive DevOps as a promising approach for intelligent software operations
in the edge computing era. This research contributes to the foundation of autonomic systems, offering critical insights for
next-generation DevOps workflows that require real-time responsiveness and resilience under uncertainty.

Keywords: Neuroadaptive DevOps, Edge Computing, Real-Time ML, Deployment Pipelines, Autonomic Systems, Continuous

Delivery, Reinforcement Learning, Context-Aware Systems.
Journal of Data Analysis and Critical Management (2025)

INTRODUCTION

The digital transformation of modern enterprises has
led to an exponential growth in data generation at
the network’s periphery, driving a rapid adoption of
edge computing. Unlike traditional cloud paradigms
where processing occurs in centralized data centers,
edge computing pushes computation closer to data
sources such as sensors, mobile devices, and industrial
control systems. This architectural evolution supports
latency-sensitive applications like autonomous vehicles,
real-time healthcare monitoring, and smart grids,
where milliseconds of delay can lead to catastrophic
consequences.

Despite the technological advantages, this
shift imposes fundamental challenges on software
engineering practices, particularly in DevOps pipelines
the automated mechanisms that ensure continuous
integration, testing, delivery, and deployment (Cl/
CD). Designed initially for homogeneous cloud
environments, traditional DevOps models are often
static, assuming stable compute infrastructure, high-

DOI: 10.64235/9xt5g531

Corresponding Author: Selva Kumar Ranganathan, AWS
Cloud Architect, MDTHINK, Department of Human Services,
Maryland USA.

How to cite this article: Ranganathan, S.K. (2025).
Neuroadaptive DevOps: Real-Time ML-Driven Adaptation
of Deployment Pipelines in Edge Environments. Journal of
Data Analysis and Critical Management, 01(3):44-50.
Source of support: Nil

Conflict of interest: None

bandwidth connectivity, and consistent software
behavior. However, edge environments are inherently
dynamic, heterogeneous, and often disconnected,
causing brittle pipelines to fail under stress.

This paper proposes a transformative approach
to DevOps in edge environments by embedding
machine learning (ML) into the DevOps lifecycle to
create Neuroadaptive DevOps systems. These systems
emulate the adaptability of biological neural systems by
continuously sensing context, learning from historical
patterns, and autonomously adjusting deployment

©TheAuthor(s). 2025 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http.//creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Neuroadaptive DevOps: Real-Time ML-Driven Adaptation of Deployment Pipelines in Edge Environments

behaviorsin real time. For example, if network telemetry
indicates a probable outage, the pipeline may postpone
the deployment or initiate a fallback configuration. If
a device's temperature exceeds safety thresholds, the
build and test processes can be temporarily offloaded.

Through this research, we aim to redefine the
software delivery lifecycle for edge-native systems by
demonstrating that machine learning-driven adaptation,
when properly integrated, can elevate DevOps pipelines
from passive execution engines to intelligent, context-
aware systems capable of self-optimization, self-
healing, and proactive control. We further present
implementation results and experimental validation
to show that Neuroadaptive DevOps achieves superior
performance in deployment latency, success rate, and
system resilience compared to conventional pipelines.

BACKGROUND

DevOps in Cloud-Centric Systems

DevOps represents the cultural and technological
convergence of development and operations, aiming
to shorten the software development lifecycle
and deliver high-quality software continuously. In
cloud environments, this is achieved using tools like
Jenkins, GitLab CI/CD, Kubernetes, and Terraform,
which automate the progression from source code to
production deployment through clearly defined stages
build, test, package, release, and monitor.
These pipelines typically assume:
« Centralized control over infrastructure
+ Stable network connections
+ Consistent compute and storage resources
« Predictable behavior of software components
Under such assumptions, DevOps pipelines have
enabled high-frequency deployments, rapid feedback
loops, and robust rollback mechanisms.

The Rise of Edge Computing

Edge computing departs radically from this model. By
placing compute, storage, and analytics closer to the
data sources, edge systems can:

+ Reduce network latency and bandwidth usage

+ Improve reliability in disconnected environments

« Support real-time decision-making at the edge
However, this architectural change introduces non-
determinism and volatility in deployment conditions.
Edge nodes are often:

« Geographically distributed and difficult to monitor
+ Limited in resources (CPU, memory, battery)

« Subject to unpredictable environmental conditions

9

» Operated over unreliable or intermittent networks
Deploying software in such environments requires
adaptation, not just automation.

Adaptive and Cognitive Systems

Adaptation in computing has been long studied under
autonomic computing, cognitive architectures, and
adaptive systems. The term neuroadaptive originates
from human-computer interaction (HCI), where
systems adapt interfaces in response to biosignals
such as EEG. These systems learn from user feedback
and environmental context to alter their behavior
dynamically.

Inspired by these principles, Neuroadaptive DevOps
brings the same level of reflexivity and adaptability to
software pipelines by leveraging:

+ Real-time system telemetry
+ ML-based prediction and inference
« Automated policy modification

In doing so, Neuroadaptive DevOps extends the
reactive and passive nature of CI/CD into a proactive
and intelligent orchestration layer suitable for edge
computing.

Related Work and Gaps

Several research areas intersect with this proposal:

« MLOps focuses on automating ML lifecycle
management, yet lacks real-time deployment
adaptivity.

- Fog and edge orchestration research explores
container migration and service discovery but not
Cl/CD adaptation.

« Autonomic computing introduces self-managing
systems, but integration with DevOps practices
remains limited.

There exists a gap in literature addressing how real-time

ML can be natively integrated into CI/CD pipelines to

enhance edge deployment efficiency and resilience.

This paper aims to bridge that gap by proposing a

unified framework that operationalizes ML in DevOps

specifically tailored to the demands of edge computing.

Problem Statement

The increasing reliance on edge computing
infrastructures poses a significant challenge to
traditional software engineering paradigms, particularly
in the domain of continuous deployment and delivery.
DevOps pipelines, as currently implemented in
centralized cloud environments, operate under
assumptions that are fundamentally misaligned with
the operational characteristics of the edge.

Journal of Data Analysis and Critical Management, Volume 01, Issue 3 (2025) 45

Neuroadaptive DevOps: Real-Time ML-Driven Adaptation of Deployment Pipelines in Edge Environments

Key challenges include

« Network Volatility and Partitioning: Edge devices
often operate in environments with unstable or
intermittent connectivity. Deployments can fail due
to timeouts, packet loss, or split-brain conditions
during updates, leading to partially deployed or
corrupted software versions.

« Hardware Heterogeneity: Unlike homogenous
cloud VMs, edge ecosystems comprise diverse
hardware: microcontrollers, Raspberry Pi devices,
mobile gateways, and industrial PCs. This variation
makes it difficult to create standardized builds, test
coverage, and deployment scripts.

» Resource Constraints: Edge devices often lack
sufficient memory, CPU, or disk space to execute full
DevOps stages like container builds, dependency
fetching, or integration testing. Static pipelines
often overestimate available resources, resulting
in system crashes or OOM (Out-of-Memory) errors.

« Contextual and Environmental Dynamics:
Software behavior is context-sensitive in edge
environments. Environmental parameters such as
temperature, signal strength, time-of-day usage
patterns, or battery health can drastically affect
deployment feasibility.

« Limited Observability and Control: Traditional
monitoring and rollback systems may be infeasible
or delayed at the edge. Without adaptive control,
failed deployments can cause prolonged downtime
and even physical system failures in industrial
settings.

Given these issues, static, pre-configured CI/CD pipelines

become brittle and non-resilient in edge environments.

What is needed is a system that can:

+ Learn from past deployment outcomes

« Monitor real-time resource and environmental
signals

+ Predict potential failures

+ Adaptively alter the DevOps process accordingly

Therefore, this research addresses the question

“Can real-time machine learning models embedded
within a DevOps pipeline intelligently adapt deployment
behavior to suit the volatile and heterogeneous nature
of edge environments?”

This forms the foundation for our Neuroadaptive
DevOps framework, which aims to provide context-
aware, resilient, and self-adjusting software deployment
pipelines using ML intelligence.

46 Journal of Data Analysis and Critical Management, Volume 01, Issue 3 (2025)

METHODOLOGY

To design, build, and evaluate Neuroadaptive DevOps,
we followed a six-step methodology combining data
collection, ML model training, pipeline integration,
real-world deployment, and performance evaluation.

Data Collection and Preprocessing

We established a monitoring network across three
deployment clusters:

« Cluster A (Urban smart-city deployment): 100 nodes
« Cluster B (Industrial automation site): 80 nodes

« Cluster C (Rural loT environment): 70 nodes

Data Sources

« System Metrics: CPU usage, memory availability,
disk 1/O, container logs

» Network Metrics: Bandwidth, packet loss,
connection uptime

« DeploymentLogs: Status codes, error logs, latency,
retry counts

» Environment Data: Ambient temperature, device
mobility (using GPS), uptime duration, power source

Each node ran a lightweight telemetry agent based

on Telegraf and communicated via MQTT over TLS to

a central InfluxDB instance. Over 60 days, we collected

~24 million telemetry records, labeled deployment

successes/failures, and augmented logs with derived

features (e.g., rolling averages, percentiles).

Machine Learning Pipeline

We applied a modular ML pipeline using TensorFlow,
PyTorch, and scikit-learn, trained in a hybrid cloud setup
with GPU acceleration for model training.

Training Details:

+ Split: 80% training, 10% validation, 10% test

+ Batch size: 128; Optimizer: Adam; Early stopping with
patience =10

« Hyperparameters tuned using Optuna framework

Pipeline Architecture Design

Key components:

« Sensor Agents: Capture real-time telemetry and
context data.

+ MLInference Engine: Performs local or cloud-based
model inference.

» Policy Adapter: Rewrites pipeline DAG (Directed
Acyclic Graph) dynamically using reinforcement
learning outcomes.

9

Neuroadaptive DevOps: Real-Time ML-Driven Adaptation of Deployment Pipelines in Edge Environments

Table 1: Model objectives and techniques

Objective Algorithm

Notes

Deployment failure prediction XGBoost, Random Forest

Latency forecasting LSTM (Seq2Seq)
Action selection Deep Q-Learning (DQN)

Anomaly detection Isolation Forest

Achieved 91.2% F1-score on predicting failures
within next 15 mins

Trained on past 12-hour metrics to forecast
deployment delay risks

"

Optimized decisions such as “pause”, “retry’,
“fallback”, or “skip”

Identified outliers for CPU/memory behavior pre-
deployment

» Executor Layer: Executes adapted pipeline tasks
using GitOps principles via ArgoCD or Jenkins
pipelines.

» Policy Cache: Stores policy decisions for future
auditability and debugging.

We implemented the pipeline in Python (for inference

and logic) and Go (for APl hooks) and used Dockerized

microservices for modularity. Integration with K3s

(lightweight Kubernetes) allowed edge-native

orchestration.

Deployment and Test Scenarios

To test system adaptability, we defined the following
test cases:

+ Network outage simulation during deployment

« Overheated node during artifact build

+ Low battery threshold warning

+ Memory-intensive app deployment

Each test ran across all 3 clusters under both baseline
DevOps (control) and Neuroadaptive DevOps (treatment)
pipelines.

REsuLTs

Our experiments yielded strong evidence that the
Neuroadaptive DevOps system outperforms traditional
CI/CD pipelines in various key performance metrics.
Below are quantitative and qualitative results based on
controlled simulations and real-world conditions.

Qualitative Feedback

We conducted a post-deployment survey with 15 site
engineers and SREs, who evaluated both pipelines
based on usability, maintainability, and adaptability:

» Ease of Use: 8.7/10 average score

» Trustin Predictions: 8.1/10

« Debugging Clarity: 7.4/10

» Overall Satisfaction: 9.0/10

9

Case Study Example

In one deployment, an industrial edge node (Jetson
Nano) began heating rapidly during a critical software
update. The Neuroadaptive system:

+ Detected elevated temperature via telemetry

+ Predicted high failure risk using Random Forest

+ Postponed deployment and logged the decision

+ Resumed deployment after temperature normalized
Traditional DevOps would have initiated the update,
risking hardware damage and failure.

Evaluation

The evaluation of Neuroadaptive DevOps was conducted
through both quantitative benchmarking and qualitative
user analysis across three key dimensions: effectiveness,
efficiency, and adaptability.

Evaluation Metrics

We used the following core metrics to assess system
performance:

Results Summary

» Failure Prediction F1-score: 0.912

» Latency Forecast MAE: 1.47 seconds

« Average Policy Reaction Time: 1.7 seconds from
trigger to action

+ Added CPU Load: +4.8% on average

« Memory Footprint: ~120MB per node (for models
and agent)

A/B Test Comparison
We ran A/B tests on 150 edge nodes under identical
workloads for 30 days. Group A used the traditional
static DevOps pipeline, while Group B used the
Neuroadaptive system.

Usability Assessment

We interviewed 15 DevOps engineers, SREs, and edge
operations personnel. Key feedback themes:

Journal of Data Analysis and Critical Management, Volume 01, Issue 3 (2025) 47

Neuroadaptive DevOps: Real-Time ML-Driven Adaptation of Deployment Pipelines in Edge Environments

Table 2: Deployment success rate across clusters

Metric Traditional DevOps Neuroadaptive DevOps Improvement
Average Deployment Latency 9.4 sec 5.2 sec ~44.6%
Deployment Success Rate 0.83 0.96 0.13

Failure Recovery Time 70 sec 24 sec ~65.7% faster
Average CPU Usage During Deploy 0.74 0.85 Efficient Util.
Rollback Accuracy (when needed) 61% 93% 0.32

False Positive Failure Alarms N/A 0.037 Acceptable

+ High Confidence in adaptive behaviorand telemetry-
based control

« Improved Troubleshooting with access to adaptation
logs and policy reasoning (Parasaram, 2022).

« Learning Curve in understanding ML decisions,
though mitigated with visualization dashboards

DiscussionN

The Neuroadaptive DevOps system introduces a new
dimension of intelligence and autonomy to software
delivery at the edge. Unlike conventional DevOps
practices that follow a fixed, predefined pipeline flow,
our system is capable of learning from past patterns,
interpreting real-time telemetry, and adjusting behavior
accordingly resulting in tangible benefits across multiple
dimensions.

Key Takeaways

« Performance Gains: Reduction in deployment
latency, increased success rates, and lower rollback
frequency showcase the impact of adaptivity.

« Robustness in Volatile Conditions: The system
proved resilient under simulated failure conditions
(e.g., dropped network, memory pressure, power
fluctuation).

+ Real-Time Inference Viability: Lightweight ML
inference at the edge (via model quantization and
LSTM-lite) proved feasible with minimal resource
impact.

Table 3: Deployment latency reduction across scenarios

Scenario Latency Latency
(Traditional) (Neuroadaptive)
Normal conditions 6.2 sec 3.8 sec
Network fluctuation 11.8 sec 6.5 sec
High CPU contention 12.4 sec 7.1 sec
Battery below 15% 14.2 sec 9.2 sec
Cognitive Feedback Loops

Much like the human nervous system, the framework

functions through continuous feedback loops:

+ Sensing: Real-time telemetry and context awareness

« Processing: Inference on risks, latency, or failure
potential

« Acting: Policy rewrite or pipeline modification

« Learning: Logging results for model refinement

This makes Neuroadaptive DevOps not just reactive, but

proactively intelligent.

7.3 Comparison to Related Work

While MLOps has made strides in lifecycle management
for ML models themselves, and edge orchestration
focuses on workload placement, few if any solutions
target the adaptation of the CI/CD pipeline logic itself.
Our work uniquely blends ML with DevOps process
execution, extending the capability of delivery pipelines
in the most dynamic settings.

Table 4: Evaluation metrics

Metric Description

Deployment Success Rate
Mean Deployment Latency
Failure Recovery Time

ML Prediction Accuracy
Resource Overhead
Adaptation Responsiveness

Percentage of completed deployments without rollback or error

Average time taken to complete deployment pipeline execution

Time taken from deployment failure to full system recovery or rollback
F1-score of ML models predicting failures or latency spikes

Additional CPU and memory cost introduced by the Neuroadaptive system
Average time taken to apply a policy change post-telemetry trigger

48 Journal of Data Analysis and Critical Management, Volume 01, Issue 3 (2025)

Neuroadaptive DevOps: Real-Time ML-Driven Adaptation of Deployment Pipelines in Edge Environments

Table 5: Test comparison

Evaluation criterion Group A Group B
(Traditional) (Neuroadaptive)

Successful 83.20% 96.10%

deployments

Rollback incidents 0.147 0.034

Average latency 9.4 sec 5.2 sec

SLA violations 0.213 0.076

Challenges

Despite its promising results, Neuroadaptive DevOps
also brings forward several implementation and
operational challenges that must be addressed to
support broader adoption.

Machine Learning Operational Challenges
» Model Drift: ML models trained on historic data may
lose accuracy as edge environments evolve.
+ Mitigation: Periodic retraining and online
learning strategies
+ Feature Engineering Complexity: Real-time
features from telemetry can be noisy orincomplete.
« Mitigation: Feature smoothing and dynamic
imputation techniques

Debugging and Transparency

« Opaque ML Decisions: Engineers sometimes
struggled to understand why a pipeline step was
skipped or altered.

« Mitigation: Visual logs and policy tracing
dashboards showing model inputs and decisions

« Policy Versioning: Dynamic policies need to be
logged and version-controlled for compliance and
rollback.

« Mitigation: Integration with GitOps-style policy
repositories

Resource Constraints at the Edge

» Inference Overhead: Even lightweight models
consume compute and memory, competing with
core application workloads.

+ Mitigation: Model quantization, edge TPUs, or
cloud-offloaded inference

Security and Trust

» Model Poisoning: Tampered models could
introduce harmful deployment behaviors.

« Telemetry Spoofing: Fake signals may mislead ML
decisions.

9

+ Mitigation: Secure model signing, anomaly
detection, and TLS-secured telemetry channels

CONCLUSION

As edge computing continues to redefine distributed
systems, the need for resilient, intelligent, and context-
aware software delivery pipelines becomes increasingly
evident. Traditional DevOps pipelines, designed for
cloud environments, fall short in coping with the
edge’s dynamic, resource-constrained, and often
unpredictable nature.

This paper introduced Neuroadaptive DevOps,
a pioneering framework that embeds real-time
machine learning into the CI/CD pipeline to enable
autonomous, adaptive behavior. By sensing system
states, predicting deployment risks, and dynamically
rewriting execution paths, the system transforms
DevOps from a static automation process into a living,
learning, and responsive control plane.

Key Contributions

« A comprehensive neuroadaptive architecture
tailored for edge environments

+ Real-time telemetry-driven ML inference and policy
adaptation

« Significant empirical performance gains in latency,
reliability, and recovery time

« Practical implementation validated on real-world
heterogeneous edge nodes

Future Work

 Federated Learning Integration: To enable
decentralized model updates across edge nodes

» LLM-Based Adaptation Logic: Using large language
models to reason over logs and propose policies

« Autonomous Compliance and Security Layer:

Extending the system to ensure real-time

governance and risk scoring

Integration with OpenTelemetry and SLSA: For

improved observability and secure software supply

chain traceability

In conclusion, Neuroadaptive DevOps paves the way

for the next generation of intelligent DevOps systems,

providing a foundation for autonomicinfrastructure that

is not only automated but deeply aware of its operating

context.

REFERENCES

Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic
computing. Computer, 36(1), 41-50.

Venkata Krishna Bharadwaj Parasaram. (2022). Converging
Intelligence: A Comprehensive Review of Aland Machine

Journal of Data Analysis and Critical Management, Volume 01, Issue 3 (2025) 49

50

Neuroadaptive DevOps: Real-Time ML-Driven Adaptation of Deployment Pipelines in Edge Environments

Learning Integration Across Cloud-Native Architectures.
International Journal of Research & Technology, 10(2),
29-34., Retrieved from https://ijrt.org/j/article/view/749
Zaharia, M., et al. (2020). Accelerating the machine learning

lifecycle with MLflow. Data Engineering, 1(1), 39-44. Journal of Engineering Science and Humanities, 12(3),
Yu, W, etal. (2019). A survey on edge computing: Architecture, 29-38. Retrieved from https://www.ijesh.com/j/article/

enabling technologies and open issues. Journal of view/424

Network and Computer Applications, 115, 1-20.
Kratzke, N. (2020). A Brief History of Cloud Application

Architectures. Applied Sciences, 10(3), 938.

Venkata Krishna Bharadwaj Parasaram. (2022). Quantum and
Quantum-Inspired Approaches in DevOps: A Systematic
Review of CI/CD Acceleration Techniques. International

Mnih, V., et al. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540), 529-533.

Journal of Data Analysis and Critical Management, Volume 01, Issue 3 (2025)

	_j83a778ysh1k
	_ap3atwusbm1c
	_pv5qrv5wtbr5
	_3rbzr9lgdw57
	_78qhzapzkic2
	_4scsu0hsuy89

