
Ab s t r Ac t
The integration of artificial intelligence (AI) and machine learning (ML) into critical infrastructure has raised urgent 
concerns about data and model security, particularly in light of emerging quantum computing capabilities. Quantum 
algorithms threaten to render classical cryptographic mewthods obsolete, exposing AI/ML systems to potential breaches 
in confidentiality, integrity, and availability. This paper investigates the implications of quantum computing for securing AI/
ML data both in transit and at rest and explores the development of quantum-safe networking protocols and cryptographic 
techniques.
I examine post-quantum cryptographic (PQC) solutions including lattice-based, code-based, and hash-based algorithms, 
alongside the role of quantum key distribution (QKD) and AI-enhanced security orchestration. The study further addresses 
secure edge intelligence, federated AI systems, and emerging standards for 6G and beyond.
My findings highlight both the necessity and complexity of transitioning to quantum-resilient infrastructure. Key challenges 
include computational overhead, legacy interoperability, and ethical concerns around AI-powered surveillance in quantum-
secured environments. The paper concludes by emphasizing the need for proactive policy, investment in quantum-safe 
R&D, and cross-sector collaboration to safeguard AI/ML infrastructure in the post-quantum era.
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In t r o d u c t I o n
The rapid deployment of artificial intelligence (AI) 
and machine learning (ML) technologies across 
critical infrastructures ranging from healthcare and 
transportation to national defense and finance has 
introduced a new class of cyber-physical dependencies. 
These intelligent systems process, transmit, and store 
vast quantities of sensitive data, making them highly 
attractive targets for cyberattacks. While traditional 
cryptographic mechanisms have long protected such 
assets, the emergence of quantum computing poses 
an existential threat to the security of AI/ML pipelines.

Quantum algorithms such as Shor’s and Grover’s 
are capable of breaking widely adopted encryption 
schemes like RSA and elliptic-curve cryptography, 
undermining data confidentiality, integrity, and 
authenticity in AI-driven environments (Raheman, 
2024; Sodiya et al., 2024). As a result, critical AI/ML 
infrastructures particularly those operating in cloud, 
edge, or federated networks are now vulnerable 
not only to classical threats but also to the future 

capabilities of quantum adversaries (Liyanage et al., 
2024; Hummelholm, Hämäläinen, & Savola, 2023). 
This transition from classical to quantum-aware threat 
models necessitates a paradigm shift in how data and 
model protection are conceptualized and implemented.

This paper examines the implications of quantum 
computing on the security of AI/ML systems, with a 
focus on both data in transit and at rest. It investigates 
the development and adoption of quantum-safe 
networking protocols, post-quantum cryptographic 
(PQC) algorithms, and quantum key distribution (QKD) 
systems. Through a critical analysis of current literature, 
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technical standards, and emerging innovations, the 
study proposes a forward-looking framework for 
securing AI/ML infrastructures in a post-quantum world.

The Convergence of AI/ML and Critical 
Infrastructure
Artificial Intelligence (AI) and Machine Learning (ML) have 
become foundational pillars in the digital transformation 
of critical infrastructure sectors such as healthcare, 
defense, finance, energy, and telecommunications. 
These technologies enable predictive decision-making, 
automation, real-time analytics, and intelligent resource 
management at unprecedented scale and speed. 
However, their increasing reliance on interconnected 
networks and vast datasets often stored in the cloud 
or distributed across edge computing environments 
has also introduced complex vulnerabilities. In parallel, 
the emergence of quantum computing threatens to 
destabilize traditional cryptographic methods that 
protect AI/ML assets. Understanding the current 
integration of AI/ML into critical systems is essential to 
appreciating the urgent need for quantum-safe security 
measures.

Role of AI/ML in Modern Digital Systems
AI and ML algorithms are now embedded in numerous 
layers of national and global infrastructures, facilitating 
real-time processing and automation in environments 
such as smart grids, autonomous vehicles, smart 
hospitals, and intelligent defense systems. These 
technologies support not only enhanced performance 
but also adaptive response to system failures and cyber 
intrusions.

Edge computing has amplified this integration by 
enabling localized AI operations closer to data sources, 
reducing latency and enhancing autonomy. However, 
edge environments often have weaker perimeter 
defenses, thus becoming a target for cyberattacks. For 
instance, Hummelholm, Hämäläinen, and Savola (2023) 
note that AI-powered edge intelligence is especially 
exposed to adversarial threats due to the decentralized 
nature of modern networks. Similarly, Padmanaban 
(2024) emphasizes that AI workloads distributed across 
the cloud and edge must be secured not just during 
computation but throughout data storage and transfer 
phases.

Moreover, AI is now central to managing complex 
and dynamic communications infrastructures, such 
as 5G and emerging 6G systems. These rely on AI for 
traffic optimization, threat detection, and self-healing 
capabilities (Liyanage et al., 2024). However, their 

growing dependence on ML models also creates high-
value attack vectors, particularly as these models can be 
reverse-engineered or manipulated if not adequately 
secured.

Risks Associated with Data in Transit and at 
Rest
The integration of AI/ML in critical systems brings 
significant security challenges, particularly with 
respect to the protection of data in transit (during 
communication between nodes) and at rest (stored 
in memory or on disk). Data exchanged between 
distributed AI components including model parameters, 
training datasets, and decision outputs is a high-value 
target for adversaries.

Talwandi and Singh (2023) discuss how AI/ML 
environments are vulnerable to model inversion 
attacks, where adversaries reconstruct training 
data from exposed models, and to data poisoning, 
which compromises model reliability. These risks are 
compounded in multi-cloud or hybrid cloud-edge 
deployments, where data traverses multiple, potentially 
insecure domains.

Quantum computing introduces an additional 
threat vector by undermining the public-key encryption 
methods currently used to protect data during 
transmission. Once quantum computers mature 
beyond current prototypes, they could feasibly 
decrypt vast amounts of historical and real-time AI/
ML data intercepted during communication processes 
(Raheman, 2024). Furthermore, Kumar et al. (2023) 
highlight how AI-driven systems used in satellite and 
UAV-based communication are particularly exposed 
due to their reliance on wireless protocols susceptible 
to both classical and quantum threats.

In summary, distributed AI learning systems such as 
federated learning are especially vulnerable. In these 
systems, AI models are trained across multiple devices 
or nodes, and updates are aggregated centrally. Without 
robust encryption, these updates may leak sensitive 
information or be tampered with during transit. 
Thomas and Anthony (2023) argue for the integration of 
AI-specific encryption mechanisms, such as quantum-
safe key exchange protocols, to protect both the model 
weights and data during transmission.

The convergence of AI/ML with critical infrastructure 
represents a double-edged sword: while it enhances 
operational efficiency and responsiveness, it also 
broadens the attack surface for malicious actors. As AI/ML 
becomes increasingly embedded in systems that sustain 
societal functions ranging from healthcare delivery to 



Quantum-Safe Networking for Critical AI/ML Infrastructure

Journal of Data Analysis and Critical Management, Volume 01, Issue 3 (2025) 21

national defense the stakes for their protection rise 
exponentially. Quantum computing compounds these 
risks by threatening to render conventional encryption 
obsolete, thereby exposing AI/ML models and data 
to unprecedented vulnerabilities. Consequently, it is 
imperative to develop and implement quantum-safe 
networking and cryptographic frameworks that can 
protect AI/ML data both in transit and at rest across 
distributed, intelligent infrastructures.

The Quantum Threat Landscape
As artificial intelligence (AI) and machine learning (ML) 
systems continue to evolve and become embedded in 
critical infrastructure, the security paradigms protecting 
them must evolve accordingly. A pressing concern lies in 
the emergence of quantum computing, a revolutionary 
computational model that poses a serious threat to 
classical cryptographic systems currently safeguarding 
AI/ML models, data pipelines, and infrastructure. 
Quantum algorithms such as Shor’s and Grover’s 
offer exponential speedups in solving problems that 
are computationally infeasible for classical systems, 
particularly those underlying public-key cryptographic 
schemes like RSA and Elliptic Curve Cryptography (ECC) 
(Raheman, 2024; Sodiya et al., 2024).

This section explores the disruptive impact of 
quantum computing on existing security models, the 
urgency surrounding post-quantum cryptographic 
(PQC) migration, and the need for proactive adaptation 
across AI/ML infrastructure.

Capabilities of Quantum Computing in 
Breaking Traditional Cryptography
Quantum computers can break many cryptographic 
protocols foundational to digital security. Shor’s 

algorithm, for instance, can factor large integers and 
compute discrete logarithms in polynomial time tasks 
upon which RSA, ECC, and Diffie–Hellman protocols 
rely. Once quantum computers scale beyond currently 
available noisy intermediate-scale quantum (NISQ) 
devices, these encryption schemes become obsolete 
(Raheman, 2024; Campbell, Diffie, & Robinson, 2024). 
In parallel, Grover’s algorithm provides a quadratic 
speed-up in brute-force searches, threatening symmetric 
encryption like AES by reducing its effective key strength 
(Ziegler et al., 2021).

This renders both data-in-transit and data-at-rest 
highly vulnerable, particularly in AI/ML environments 
that depend on secure cloud-hosted model parameters, 
federated learning updates, and real-time analytics over 
5G/6G networks (Liyanage et al., 2024; Osaka, Karan, & 
Smith, 2024).

Timeline and Urgency of Post-Quantum 
Cryptographic Migration
Experts and standardization bodies underscore that 
although scalable quantum computers are not yet 
available, “harvest now, decrypt later” attacks are 
already a concern. Threat actors may store encrypted 
AI/ML datasets today, intending to decrypt them once 
quantum capabilities mature (Scalise et al., 2024; Kumar 
et al., 2023). The National Institute of Standards and 
Technology (NIST) has proactively begun standardizing 
quantum-resistant algorithms, with multiple lattice-
based and hash-based schemes in their final phases 
(Campbell, Diffie, & Robinson, 2024).

The AI/ML domain is especially vulnerable due to 
its high dependency on cloud storage, edge inference, 
and secure API connections all of which use encryption 
that may be rendered ineffective without migration. 

Table 1: Quantum impact on classical cryptographic protocols

Encryption type Vulnerable to quantum 
algorithm

Security dimension 
affected

Estimated break time (post-
quantum era)

Recommended pqc 
alternative

RSA (2048-bit) Shor’s Algorithm Confidentiality, 
Authenticity

~1 hour (on large-scale 
quantum machine)

CRYSTALS-Kyber (lattice-
based)

Elliptic Curve 
Cryptography (ECC)

Shor’s Algorithm Confidentiality, 
Authenticity

~minutes CRYSTALS-Kyber / NTRU

AES-128 Grover’s Algorithm Confidentiality Reduced to AES-64-bit 
security

AES-256 or symmetric PQC 
variants

SHA-256 Grover’s Algorithm Integrity, Digital 
Signatures

Quadratic speed-up SHA3 family / SPHINCS+

Diffie–Hellman (DH) Shor’s Algorithm Key Exchange, 
Confidentiality

~minutes to hours Lattice-based KEM (Kyber)

TLS (1.2/1.3) Shor’s (via RSA/ECC inside 
TLS)

Session Security Depends on cert key type Hybrid TLS with PQC 
handshake
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Organizations delaying PQC adoption may face 
compliance gaps, data exposure, and model theft risks 
in the coming decade (Rawat & Bajracharya, 2024; Dutta 
et al., 2023).

Additionally, some researchers suggest that quantum 
computing’s impact on AI might extend beyond 
cryptography into model training and optimization 
itself, necessitating a unified threat model that accounts 
for these hybrid interactions (Padmanaban, 2024; Suresh 
et al., 2024).

Quantum Threats to AI/ML Pipelines: Real-
World Scenarios
In critical AI infrastructure such as healthcare diagnostics, 
military drones, and smart city systems AI models rely 
on constant communication between sensors, edge 
devices, and cloud backends. Encryption protocols like 
TLS, IPsec, and SSH secure these interactions. However, 
quantum attacks targeting these tunnels may expose 
entire inference pipelines or retraining workflows, 
allowing adversaries to manipulate predictions or 
steal model intellectual property (Alwan et al., 2023; 
Hummelholm, Hämäläinen, & Savola, 2023).

In decentralized or federated AI systems, which are 
increasingly deployed to address privacy concerns, 
quantum threats to authentication and key exchange 
could disrupt consensus mechanisms and open vectors 
for adversarial poisoning or model tampering (Yavuz et 
al., 2022; Thomas & Paul, 2023).

In sum, the quantum threat to AI/ML systems is not 
speculative, it is a calculated inevitability. While the 
timeline for quantum advantage remains fluid, the 
security ramifications for cryptographic infrastructure 
protecting AI/ML data, models, and services are 
immediate and substantial. Traditional encryption 
models, already strained by computational AI demands, 
will be wholly insufficient in the quantum era. Therefore, 
it is imperative for policymakers, technologists, and AI 
researchers to prioritize the migration toward post-
quantum cryptography, integrate quantum-resilient 
protocols into AI infrastructure design, and build robust, 
future-proof networking frameworks. The next sections 
of this study will explore these mitigation strategies and 
architectural reforms in depth.

Post-Quantum Cryptography (PQC) for AI/ML 
Protection
As artificial intelligence (AI) and machine learning 
(ML) become integral to critical infrastructure from 
healthcare diagnostics and financial systems to military 
intelligence and industrial automation their security 

has become paramount. These systems generate and 
rely on vast amounts of sensitive data and proprietary 
models, which are often transmitted across cloud, 
edge, and multi-cloud environments. However, the 
cryptographic foundations protecting these system 
RSA, ECC, and other conventional encryption methods 
are under existential threat from quantum computing 
advancements (Raheman, 2024; Campbell, Diffie, & 
Robinson, 2024).

Post-Quantum Cryptography (PQC) aims to develop 
cryptographic protocols that can resist attacks from 
both classical and quantum computers. This section 
explores how PQC can secure AI/ML systems by 
protecting models, data pipelines, and multi-cloud 
infrastructures. It also discusses the implications for 
algorithm selection, integration into AI workflows, and 
secure multi-party computation.

Quantum-Safe Cryptographic Algorithms
Quantum computing’s ability to run Shor’s and Grover’s 
algorithms makes it capable of breaking most existing 
cryptographic schemes, especially those reliant on 
factorization and discrete logarithms (Sodiya et al., 
2024; Kumar, Hedabou, & de Jesus Pacheco, 2024). 
PQC, as promoted by NIST and global standardization 
bodies, is built around hard mathematical problems 
presumed to be resistant to quantum attacks. The four 
most prominent families of PQC are:
• Lattice-based cryptography (e.g., Kyber, Dilithium)
• Code-based cryptography (e.g., Classic McEliece)
• Multivariate polynomial cryptography
• Hash-based signatures
Among these, lattice-based algorithms are currently 
seen as the most efficient and versatile, and are being 
considered for NIST standardization. These methods can 
be integrated into AI/ML model protection pipelines 
for key exchange, digital signatures, and encrypted 
inference (Ziegler et al., 2021; Thomas & Paul, 2023).

Encryption of AI/ML Models and Parameters
AI/ML models, especially those trained on proprietary 
or sensitive data are intellectual assets that must be 
protected both at rest and in transit. PQC ensures 
confidentiality and integrity through quantum-resilient 
encryption and digital signatures:
• Model encryption at rest: PQC-based symmetric 

encryption (e.g., hybrid lattice-AES) can protect 
trained models stored in cloud/edge environments 
(Osaka, Karan, & Smith, 2024; Padmanaban, 2024).

• Secure model inference: Post-quantum digital 
signature schemes authenticate and verify models 
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Fig 1: The bar chart illustrates the computational complexity 
and quantum resistance of classical vs. PQC algorithms, 
highlighting Kyber, McEliece, and Dilithium vs. RSA and ECC

Table 2: Classical vs. Post-Quantum Encryption Schemes in AI/ML Infrastructure

Encryption scheme Algorithm type Quantum resistance Applicable ai use case Performance overhead

RSA Asymmetric (Public 
Key)

 No Model signing, secure key 
exchange

Low–Moderate

AES Symmetric Key  Yes (larger key size) Encrypted inference, data 
at rest

Low

ECC (Elliptic Curve Cryptography) Asymmetric  No Federated learning 
communication

Low–Moderate

Lattice-based (e.g., Kyber, NTRU) Post-Quantum 
Asymmetric

 Yes Secure model exchange, 
homomorphic encryption

Moderate–High

Code-based (e.g., McEliece) Post-Quantum 
Asymmetric

Yes Secure parameter updates High (due to large key 
sizes)

Multivariate (e.g., Rainbow) Post-Quantum 
Asymmetric

 Yes (theoretically) Authentication in AI 
pipelines

Moderate

Hash-based (e.g., SPHINCS+) Post-Quantum 
Signature

 Yes Model signing and 
verification

High (slower than 
classical sigs)

Homomorphic Encryption (e.g., 
BFV, CKKS)

Lattice-based / 
Specialized

Yes (with schemes like 
CKKS)

Privacy-preserving 
inference

Very High

used in edge deployments, especially in federated 
AI applications (Thomas & Paul, 2023).

• Encrypted transfer between nodes: AI/ML model 
parameters and weights transferred across training 
environments (e.g., federated learning) can be 
shielded from tampering using PQC protocols like 
Kyber-based TLS.

These methods reduce the risk of model inversion 
attacks, data poisoning, and adversarial inference, which 
could otherwise be amplified by quantum computing 
capabilities.

Secure Multi-Cloud and Federated AI Systems
In federated learning and distributed AI ecosystems, 
data and model updates are exchanged between 
multiple edge devices and servers. These systems are 
particularly vulnerable to man-in-the-middle attacks 

and data exfiltration, especially if quantum computers 
compromise conventional encryption.

Quantum-safe networking protocols using PQC have 
been tested in multi-cloud and edge AI scenarios:
• Post-Quantum TLS (PQTLS) has been piloted using 

Kyber and Dilithium for encrypted communications 
between training nodes (Liyanage et al., 2024).

• Quantum-resilient federated learning can deploy 
PQC signatures and authentication to verify model 
updates and ensure trust in collaborative AI (Rawat 
& Bajracharya, 2024; Yavuz et al., 2022).

Moreover, AI-enabled orchestration tools are being 
developed to manage the complexity of PQC integration 
across hybrid networks (Hummelholm, Hämäläinen, & 
Savola, 2023).

In summary, post-Quantum Cryptography represents 
a crucial evolution in protecting AI/ML infrastructure 
against the threats posed by quantum computing. As 
highlighted, PQC is not just a theoretical advancement 
but is increasingly being integrated into real-world AI 
workflows from model encryption and digital signatures 
to federated AI and edge deployments. The urgency 
of this shift is underscored by industry roadmaps 
and government frameworks pushing for quantum 
readiness. Ultimately, PQC will serve as a foundational 
pillar in the architecture of secure, scalable, and future-
proof AI/ML systems.

Quantum-Safe Network Architecture
As the proliferation of AI/ML systems across critical 
infrastructure accelerates, the networking environments 
underpinning these systems face unprecedented threats 
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from quantum computing. Classical cryptographic 
protocols such as RSA and ECC used to secure data-
in-transit are vulnerable to quantum attacks capable 
of decrypting sensitive transmissions in near real-time 
(Raheman, 2024; Sodiya et al., 2024). Therefore, the 
shift toward quantum-safe network architectures is 
not merely an upgrade but a strategic imperative. This 
section examines emerging frameworks for quantum-
resilient communication infrastructures that protect AI/
ML data and models at rest and in transit, particularly 
within edge intelligence, federated learning, and 
software-defined networks (SDNs).

Secure Edge Intelligence and Distributed AI
Edge intelligence decentralized AI computation near 
data sources enhances real-time processing and privacy. 
However, this architectural shift expands the attack 
surface, especially when transmitting model parameters 
or raw data across nodes. As Hummelholm, Hämäläinen, 
and Savola (2023) emphasize, secure orchestration 
across the edge must integrate quantum-safe key 
exchange and AI-enhanced anomaly detection.

Yavuz et al. (2022) propose a hybrid post-quantum 
infrastructure incorporating distributed trust and secure 
containers, enabling dynamic validation and encryption 
of inference results. Integrating lattice-based encryption 
ensures computational security even in post-quantum 
contexts.

Post-Quantum VPNs, SDNs, and Quantum Key 
Distribution (QKD)
The foundational networking elements VPNs, routers, 
and orchestrators must be adapted for quantum 
resilience. Post-quantum VPN protocols using Kyber 
and McEliece algorithms replace RSA-based tunneling 
(Scalise et al., 2024). Alwan et al. (2023) demonstrate the 
covert and quantum-safe tunneling of military-grade 
RF waveforms through non-cooperative 5G networks, 

using quantum-resistant encapsulation to preserve 
integrity.

Furthermore, AI-assisted SDN controllers are 
emerging as dynamic agents for post-quantum traffic 
management. These intelligent controllers apply 
reinforcement learning to identify and reconfigure 
compromised links in real time (Oladipo & Sharma, 2024). 
With SDNs as a foundation, secure QKD handshakes can 
be orchestrated at scale.

AI-Enabled Threat Detection in Quantum-Safe 
Networks
As cryptography evolves to counter quantum threats, 
AI/ML plays a central role in detecting anomalies in both 
legacy and quantum-safe traffic. Rommel et al. (2024) 
demonstrated the deployment of ML enabled scaling 
and QKD-secured connections in a 5G demo, illustrating 
real-world feasibility. These systems can learn from 
adversarial behavior patterns, detect data poisoning 
in model updates, and monitor unusual encryption 
handshake patterns indicative of man-in-the-middle 
or side-channel attacks.

Pawar, Shinde, and Dimble (2024) highlight that 
threat intelligence, when embedded in AI-driven 
intrusion detection systems (IDS), enhances real-time 
response and adaptive firewalling. These systems must 
themselves be protected with quantum-safe credentials 
to avoid becoming new vectors of attack.

Risk Assessment and Policy Implications
As quantum computing continues its trajectory toward 
practical deployment, the urgency to assess the 
vulnerabilities of critical AI/ML infrastructures becomes 
increasingly paramount. The convergence of quantum 
computing and artificial intelligence introduces a 
multidimensional threat landscape, one that challenges 
the foundational assumptions of digital trust, secure 
communication, and data sovereignty. In particular, 

Table 3: Comparative Security Mechanisms for Edge Intelligence

Use case Traditional security Post-quantum alternative Vulnerability to quantum 
attack

Performance 
overhead

Federated Learning ECC-based key exchange Lattice-based (e.g., Kyber) High (ECC vulnerable) Moderate

Inference Transmission TLS with RSA TLS with Post-Quantum TLS (e.g., 
Kyber + Dilithium)

High (RSA vulnerable) Moderate–High

Model Signing RSA / ECDSA SPHINCS+, Dilithium High High (SPHINCS+)

Secure Aggregation Homomorphic encryption 
(RSA-based)

CKKS (Post-Quantum HE) High Very High

Device Authentication ECC certificates XMSS / SPHINCS+ High Moderate–High

Data-at-Rest 
Encryption

AES-256 AES-256 (Quantum-Resistant 
with larger key sizes)

Low (symmetric key safer) Low
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Fig 2: The graph above compares the performance of 
traditional VPNs (RSA, ECC) and post-quantum VPNs (Kyber, 

McEliece) across three key metrics

Table 4: AI Techniques for Quantum-Resilient Network Monitoring

AI technique Use case Input features Target threat type Quantum-safe status

Supervised Learning Encrypted traffic 
classification

Packet size, timing, 
handshake metadata

Protocol misuse, 
tunneling

Compatible with quantum-safe 
encryption

Anomaly Detection Real-time intrusion 
detection

Packet timing, 
entropy, session 
duration

Zero-day attacks, DDoS Unaffected by encryption scheme

Reinforcement 
Learning

Adaptive firewall 
tuning

Action-reward history, 
traffic context

Evolving intrusion 
patterns

Model-independent of crypto layer

Unsupervised 
Clustering

Insider threat 
detection

User behavior 
patterns, access logs

Privilege escalation, 
lateral movement

 Uses behavior-based inputs

Graph Neural Networks 
(GNN)

Network topology 
analysis

Node connections, 
traffic flow paths

Man-in-the-middle, path 
manipulation

 Independent of cryptographic 
protocols

Deep Autoencoders Encrypted channel 
anomaly detection

Encrypted packet 
patterns, timing shifts

Steganography, covert 
channels

 Effective with post-quantum TLS

AI/ML systems, which often rely on distributed 
architectures and high-volume data exchanges, are 
acutely vulnerable to post-quantum attacks on both 
data in transit and data at rest (Raheman, 2024; Rawat 
& Bajracharya, 2024).

This section provides a comprehensive risk 
assessment framework for AI/ML systems operating in 
quantum-threatened environments and examines the 
global policy implications surrounding quantum-safe 
networking protocols. It further highlights existing 
security standards, organizational gaps, and strategic 
governance models needed to facilitate the migration 
toward post-quantum secure architectures.

Strategic Risk Assessment of AI/ML 
Infrastructure in the Quantum Era
The first step in designing a robust quantum-safe 
ecosystem is understanding the scope and nature of 
the risks. These risks can be grouped into four broad 
categories:

• Cryptographic Obsolescence: Traditional RSA, 
ECC, and Diffie-Hellman schemes will be rendered 
obsolete by quantum algorithms such as Shor’s 
algorithm (Ziegler et al., 2021; Kumar, Hedabou, & 
de Jesus Pacheco, 2024).

• AI Model Theft and Tampering: Insecure models 
stored or transmitted using vulnerable encryption 
schemes could be exposed to reconstruction or 
adversarial manipulation (Talwandi & Singh, 2023).

• Data Sovereignty and Integrity Risks: Federated 
learning and multi-cloud deployments heighten the 
risks associated with data interception and poisoning 
(Thomas & Paul, 2023; Liyanage et al., 2024).

• Infrastructure-level Exploits: Edge and IoT-based 
inference systems are especially susceptible to 
lateral attacks if quantum-resistant authentication 
mechanisms are not in place (Yavuz et al., 2022).

Mapping Current Standards and Security Gaps
Despite growing awareness of quantum threats, 
current AI/ML systems largely remain dependent on 
cryptographic primitives that are not quantum-resistant. 
Standards bodies such as NIST and ETSI are accelerating 
their roadmaps for post-quantum cryptography (PQC) 
adoption, but there remains a lag in implementation 
across industries (Campbell, Diffie, & Robinson, 2024; 
Dutta et al., 2023).

A significant challenge lies in the interoperability 
between post-quantum systems and existing legacy 
infrastructure. For instance, while lattice-based 
encryption algorithms are promising for securing 
AI model parameters, they introduce computation 
overheads and compatibility issues with lightweight 
edge hardware (Hummelholm, Hämäläinen, & Savola, 
2023; Padmanaban, 2024).
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Fig 3: The graph above illustrates the Post-Quantum Risk Map for AI/
ML Systems across four critical dimensions.

Table 5: Comparative Analysis of PQC Integration Across Critical Sectors

Sector Current cryptographic methods Pqc readiness 
level Identified AI vulnerabilities Strategic migration plans

Healthcare RSA, ECC, AES  Moderate Model poisoning, data 
leakage during federated 
learning

Pilot PQC in EHR access control and 
encrypted diagnostics (Bolgouras et 
al., 2024)

Finance TLS 1.2/1.3, ECC, RSA  Low–Moderate Adversarial transactions, 
spoofed biometric 
authentication

Gradual transition to hybrid TLS with 
Kyber/Dilithium (Gastouniotis, 2024)

Defense ECC, RSA, proprietary crypto  High Adversarial image 
classification, 
communication spoofing

Mandated PQC protocols for secure 
command-and-control by 2026 
(Bolgouras et al., 2024)

Smart 
Infrastructure

ECC, AES Moderate Sensor spoofing, 
adversarial control signals

Sector-wide roadmap for PQC 
in IoT mesh networks underway 
(Gastouniotis, 2024)

Policy Frameworks and Global Roadmaps
The policy response to quantum threats remains 
fragmented. While the European Union’s ENISA and 
NIST’s PQC initiatives have published frameworks for 
cryptographic migration, few mandates exist for AI/
ML-specific systems (Dutta et al., 2023; Neelima, Kavya, 
& Pandey, 2024). AI-driven communication networks, 
especially those used in smart cities and military 
contexts, require both regulatory oversight and real-
time enforcement tools to mitigate quantum-level 
threats (Alwan et al., 2023; Rommel et al., 2024).

A policy framework that integrates quantum 
readiness with AI ethics, secure software development 
lifecycles, and cross-border data governance is essential. 
Governments and regulatory bodies must collaborate 
with industry and academic consortia to:

• Establish mandatory PQC adoption timelines.
• Fund open-source quantum-safe AI frameworks.
• Promote AI-specific encryption standards.
• Conduct national-level readiness assessments.
Efforts such as the IEEE Future Networks Roadmap 
(Dutta et al., 2023) and the ETSI Quantum-Safe Working 
Group are laying foundational groundwork but require 
expanded jurisdiction and AI-focused mandates.

Governance and Institutional Readiness
Institutions and corporations often lack dedicated 
governance models for AI/ML security in the post-
quantum context. Unlike traditional cybersecurity 
frameworks, quantum-safe AI security must be dynamic, 
cross-disciplinary, and predictive (Sodiya et al., 2024; 
Oladipo & Sharma, 2024). Proactive risk modeling 
supported by AI can help monitor the quantum-
resilience of deployed systems and flag non-compliant 
components in real time.

Moreover, cross-sectoral partnerships between 
governments, telcos, cloud providers, and AI labs can 
accelerate PQC testing and standardization efforts. For 
instance, initiatives integrating QKD (Quantum Key 
Distribution) with ML-driven anomaly detection offer 
a compelling model of secure-by-design AI systems 
(Rommel et al., 2024; Pawar, Shinde, & Dimble, 2024).

In sum, the looming reality of quantum computing 
demands immediate and coordinated responses 
across policy, security, and AI communities. Critical AI/
ML systems, especially those deployed in distributed 
and real-time environments, face multidimensional 
risks from quantum threats that cannot be mitigated 
by conventional means. A shift toward post-quantum 
secure architectures, embedded in proactive governance 
frameworks and international policy mandates, is not 
just necessary, it is inevitable.
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Future efforts must focus on closing the implementation 
gap between cryptographic innovation and institutional 
practice. The integration of quantum-safe protocols with 
AI-driven risk intelligence, underpinned by coherent 
policy ecosystems, will be essential to safeguarding the 
next generation of intelligent systems.

Challenges and Future Research Directions
As the transition toward quantum-safe networking 
becomes increasingly urgent, especially for critical 
AI/ML infrastructures, the path forward is not 
without considerable obstacles. While post-quantum 
cryptographic (PQC) algorithms and quantum-
resistant architectures offer promising defenses against 
quantum-enabled threats, they also introduce new 
technical, operational, and ethical complexities. This 
section explores the key challenges in the development 
and deployment of quantum-safe networks tailored for 
AI/ML ecosystems and outlines priority areas for future 
research that can bridge the gap between conceptual 
security and real-world application.

Performance and Scalability Bottlenecks
One of the most immediate concerns in implementing 
quantum-safe solutions is the computational overhead 
associated with post-quantum algorithms. Many lattice-
based or code-based encryption schemes demand 
significantly more processing power and memory, 
which can degrade the performance of real-time AI/ML 
tasks particularly in edge and IoT devices with limited 
resources (Hummelholm, Hämäläinen, & Savola, 2023). 
For instance, encryption techniques that protect AI 
models in transit or at rest may increase latency in 
federated learning or distributed inference, potentially 
leading to bottlenecks in time-sensitive applications 
such as autonomous vehicles and healthcare diagnostics 
(Padmanaban, 2024; Suresh et al., 2024).

Integration with Legacy Systems and Hybrid 
Environments
Another critical challenge is interoperability. Many 
existing AI/ML pipelines operate on infrastructure built 
around classical cryptographic standards. Migrating to 
post-quantum frameworks requires careful integration 
that preserves compatibility with legacy systems 
while ensuring that transitional vulnerabilities are 
not introduced. This complexity is amplified in hybrid 
environments that mix cloud, edge, and on-premises 
architectures (Yavuz et al., 2022; Kumar et al., 2023). 
Current research has yet to fully address secure 
protocol transitions that can function smoothly across 

mixed environments, especially for multinational or 
decentralized infrastructures.

Standardization and Global Coordination
Despite growing awareness of quantum threats, 
standardization efforts remain fragmented. While NIST 
has made significant progress in recommending post-
quantum encryption standards, there is a lack of uniform 
adoption across sectors and countries (Campbell, Diffie, 
& Robinson, 2024). This uneven global response risks 
creating asymmetric security gaps in cross-border AI/ML 
data flows, particularly in sectors like finance, defense, 
and health. Dutta et al. (2023) highlight the need for a 
unified roadmap to harmonize quantum-safe protocols 
with existing trust and privacy frameworks.

Adversarial AI and Emerging Attack Vectors
The intersection of AI and quantum computing also 
creates new vulnerabilities, particularly as adversarial 
AI becomes more advanced. Threats such as model 
poisoning, data evasion, or inference extraction may 
be enhanced through quantum computation, which 
could accelerate attack optimization and decryption 
processes (Raheman, 2024; Thomas & Paul, 2023). 
Moreover, securing AI/ML models themselves, often 
treated as intellectual property, becomes more complex 
under quantum attack scenarios that can potentially 
reverse-engineer model weights or hyperparameters 
(Liyanage et al., 2024).

Ethical and Governance Challenges
Quantum-safe technologies also raise ethical and 
governance concerns, particularly regarding data 
sovereignty, algorithmic surveillance, and automated 
decision-making. As quantum-enhanced AI systems 
become embedded in public infrastructure, questions of 
transparency, accountability, and oversight will become 
even more critical (Lilhore et al., 2024). Additionally, the 
strategic dominance of quantum and AI technologies 
by select nations or corporations could widen global 
digital divides and lead to techno-political asymmetries 
(Sodiya et al., 2024; Gastouniotis, 2024).

Priority Areas for Future Research
To address the aforementioned challenges, several 
research frontiers warrant attention:
• Lightweight PQC algorithms for low-power devices, 

ensuring AI/ML systems can operate efficiently 
without compromising security (Bolgouras, Farao, 
& Xenakis, 2024).

• Dynamic threat modeling that accounts for evolving 
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quantum attack surfaces in AI-driven environments 
(Neelima, Kavya, & Pandey, 2024).

• Secure orchestration protocols that harmonize AI/
ML task distribution with quantum-resistant key 
exchanges, especially in edge-cloud paradigms 
(Rommel et al., 2024).

• AI-augmented defense mechanisms, where machine 
learning detects quantum-level intrusions in real-
time (Pawar, Shinde, & Dimble, 2024; Oladipo & 
Sharma, 2024).

• Cross-disciplinary frameworks integrating quantum 
computing, cybersecurity, legal theory, and ethics 
to guide safe deployment in public infrastructure 
(Osaka, Karan, & Smith, 2024).

In summary, the race toward quantum-safe networking is 
a critical juncture in the evolution of AI/ML infrastructure 
security. However, the road ahead is fraught with 
multidimensional challenges technical, operational, 
regulatory, and ethical. As quantum computing 
capabilities continue to advance, so too must our 
commitment to robust, scalable, and inclusive solutions. 
Through collaborative research and coordinated policy 
efforts, it is possible to future-proof AI/ML systems and 
safeguard the digital infrastructure that increasingly 
underpins our societies.

co n c lu s I o n
The convergence of artificial intelligence, machine 
learning, and quantum computing marks a pivotal 
transformation in the digital age, one that brings both 
unprecedented capabilities and profound security 
risks. As AI/ML systems become integral to critical 
infrastructure from healthcare and finance to defense 
and communications the need to secure their data, 
models, and operations against emerging quantum 
threats has never been more urgent.

This article has examined how quantum computing 
challenges the foundations of traditional cryptographic 
security, threatening the confidentiality and integrity 
of AI/ML assets in transit and at rest (Raheman, 2024; 
Sodiya et al., 2024). It has further outlined how post-
quantum cryptographic methods and quantum-safe 
networking protocols offer a promising defense, albeit 
with significant implementation challenges including 
performance trade-offs, interoperability with legacy 
systems, and lack of standardized global frameworks 
(Campbell, Diffie, & Robinson, 2024; Hummelholm, 
Hämäläinen, & Savola, 2023).

Moreover, as adversarial AI and new attack vectors 
emerge in the post-quantum era, safeguarding the 

integrity of AI models and securing multi-cloud and 
federated learning environments will require a deeper 
integration of lightweight PQC, secure orchestration 
protocols, and AI-driven anomaly detection (Thomas 
& Paul, 2023; Yavuz et al., 2022; Rommel et al., 2024).

In moving forward, it is imperative that stakeholders 
including policymakers, technologists, and academic 
researchers engage in collaborative innovation and 
governance. Developing interoperable standards, 
investing in ethical frameworks, and prioritizing 
resilience in AI/ML infrastructure will be key to building 
a secure and trustworthy quantum future. Only through 
such integrated, cross-disciplinary approaches can we 
ensure that the evolution of AI and quantum computing 
proceeds not only with technical sophistication, but 
with responsible foresight.
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