
AbstrAct
To mitigate the discrepancy between processor and main memory speeds, ‘cache’s are added to a system. A ‘cache’ is a
quick, tiny memory that sits between the main memory and the processor. The ‘‘cache’’s access time is matched by the
processor’s cycle time. Therefore, the ‘‘cache’ memory’ of system should be able to reply to a memory request in about
10ns if the processor is operating at a 100MHz speed. ‘‘cache’ memory’ is actually constructed on the ‘processor chip’ and
divided into separate instruction and data ‘cache’s in today’s high-performance single-chip CPUs. These ‘cache’s typically
have a size of 8 KB, so that the CPU chip has 16 KB of ‘cache’ overall. An off-chip ‘cache’, commonly known as the second-
level ‘cache’ or L2 ‘cache’, is also a common feature of system designs.
Keywords: Spatial Locality, Temporal Locality, CPU, Intel ‘cache’, Data Buffer.
Journal of Data Analysis and Critical Management (2025); DOI: XXXX.XXXX

Evaluation Of ‘Cache’ Memory Performance Variation
On Size Variation
Amit Kumar1, R. S, Kumar2

1Research Scholar/Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India.
2Department of Information Technology/Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India.

Corresponding Author: Amit Kumar, Research Scholar/Amrita
Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India., e-mail:
email
How to cite this article: Kumar, A., Kumar, R.S. (2025).
Evaluation Of ‘Cache’ Memory Performance Variation
On Size Variation. Journal of Data Analysis and Critical
Management, 01(1):10-12.
Source of support: Nil
Conflict of interest: None

© The Author(s). 2025 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Journal of Data Analysis and Critical Management, Volume 01, Issue 01, 2025

IntroductIon
Access times for modern main memory chips range
from 60 to 70 ns. The memory access time can rise to
100 ns or more when one includes the time it takes for
a memory request to go from the CPU to the system
bus, followed by the memory controllers and decode
logic. The cycle time of a CPU operating at 100MHz
is 10ns. An “ADD instruction” that takes one of its
‘operands’ from the main memory may wait 100 ns for
that operand and complete the addition in 10 ns if we
assume that an addition may be completed in a single
processor cycle. The memory access time would then
be the primary determinant of the total time needed
to finish a program; a processor speed increase would
have minimal impact.

The size of the L2 ‘cache’ can range from 128 KB
to 4 MB. The first-level or primary ‘cache’ is the name
given to the on-chip ‘cache’. The speed of the second-
level ‘cache’ can be a little slower than that of the main
memory, but the first-level ‘cache’ must match the
speed of the processor. A memory request made by
the processor initially travels to the primary ‘cache’.
A ‘‘cache’’ hit occurs if the data item is located in this
‘cache’. A ‘cache’ miss occurs and the memory request is
sent to the L2 ‘cache’ if the data item cannot be located
in the primary ‘cache’. An L2 ‘cache’ hit occurs and the

data is returned to the primary ‘cache’ if the data item
is located in this ‘cache’. The request is ultimately sent
to main memory if the data cannot be located in the L2
‘cache’.

The data item is transmitted back to the L2 ‘cache’ and
subsequently the primary ‘cache’ after the main memory
has responded to the memory request. Because the
primary ‘cache’ can typically handle the memory request,
‘cache’s function effectively. Measurements really reveal
that the data ‘cache’ can reply to the data request 85%
of the time and the instruction ‘cache’ will hold the
requested instruction 90% of the time. As a result, little
access is made to the L2 and main memory.

Two facets of program behavior are responsible for
the primary ‘cache’s ability to manage so many memory
requests:

Evaluation Of ‘Cache’ Memory Performance Variation On Size Variation

Journal of Data Analysis and Critical Management, Volume 01, Issue 1 (2025) 11

Figure 1: ‘cache’s in a typical system

Figure 2: Typical ‘cache’ organization

Figure 3: Pentium 4 Block Diagram

Table 1: Intel ‘cache’ Evolution

Problem Solution Processor on which
feature first appears

System bus speed is faster than external storage. Utilize quicker memory technologies to add an external ‘cache’. 386

The external bus becomes a bottleneck for ‘cache’
access as processor performance increases.

Processing at the identical speed as the processor, move the
external ‘cache’ onto the chip. 486

Because of the chip’s limited size, the internal ‘cache’ is
quite modest.

Using quicker technology than main memory, add an external
L2 ‘cache’. 486

When the Execution Unit and the Instruction
Prefetcher both need access to the ‘cache’ at the same
time, contention arises. Then, while the Execution
Unit accesses the data, the Prefetcher is halted.

Make distinct ‘cache’s for instructions and data. Pentium

The external bus becomes a bottleneck for L2 ‘cache’
access as processor speed increases.

Make a distinct back-side bus that operates faster than the
front-side external bus. The L2 ‘cache’ is the focus of the BSB. Pentium Pro

Transfer the L2 ‘cache’ to the CPU chip. Pentium II

Certain applications work with enormous databases
and require quick access to a lot of data. The ‘cache’s
on the chip are too little.

Add external L3 ‘cache’. Pentium III

Move L3 ‘cache’ on-chip. Pentium IV

Figure 4: PowerPC G5 Block Diagram
Locality in Time
It is quite probable that a memory place will be
mentioned again soon after it has been referenced.

Locality in Space
It is highly probable that a nearby memory location
will be mentioned soon if a memory location is already
referenced.

‘cache’ design parameter:
• ‘cache’ size;
• ‘cache’ block size;
• mapping function, which determines how blocks

are assigned
• Write a Replacement Polic y-algorithm for

determining whether to replace blocks

Evaluation Of ‘Cache’ Memory Performance Variation On Size Variation

Journal of Data Analysis and Critical Management, Volume 01, Issue 1 (2025)12

Table 2: Comparison of ‘cache’ Sizes
Processor Type Year of Introduction Primary ‘cache’ (L1) 2

nd
 level ‘cache’ (L2) 3rd level ‘cache’ (L3)

IBM 360/85 Mainframe 1968 16 to 32 KB - -

PDP-11/70 Minicomputer 1975 1 KB - -

VAX 11/780 Minicomputer 1978 16 KB - -

IBM 3033 Mainframe 1978 64 KB - -

IBM 3090 Mainframe 1985 128 to 256 KB - -

Intel 80486 PC 1989 8 KB - -

Pentium PC 1993 8 KB 256 to 512 KB -

PowerPC 601 PC 1993 32 KB - -

PowerPC 620 PC 1996 32 KB/32 KB - -

PowerPC G4 PC/server 1999 32 KB/32 KB 256 KB to 1 MB 2 MB

IBM S/390 G4 Mainframe 1997 32 KB 256 KB 2 MB

IBM S/390 G6 Mainframe 1999 256 KB 8 MB -

Pentium 4 PC/server 2000 8 KB/8 KB 256 KB -

IBM SP High-end server/
supercomputer 2000 64 KB/32 KB 8 MB -

CRAY MTAb Supercomputer 2000 8 KB 2 MB -

Itanium PC/server 2001 16 KB/16 KB 96 KB 4 MB

SGI Origin 2001 High-end server 2002 32 KB/32 KB 4 MB -

Itanium 2 PC/server 2003 32 KB 256 KB 6 MB

IBM POWER5 High-end server 2004 64 KB 1.9 MB 36 MB

CRAY XD-1 Supercomputer 2004 64 KB/64 KB 1 MB -

conclusIon
In conclusion, the hardware may compare all 512
tag registers with the most important 28 bits of the
physical address when a memory access is needed.
512 comparators are used in these simultaneous
comparisons. We have a ‘cache’ hit if any of these
comparators return a match. The correct byte is then
chosen using the least significant four bits of the
physical address once the line that generated the hit
has been read out of the ‘cache’.

Unfortunately, the enormous number of bits
in the tag field and the requirement for numerous
comparators make it challenging to construct a fully-
associative ‘cache’. Limiting the number of memory
blocks that can be kept in each ‘cache’ line is one way
to make the issue simpler. This might be accomplished
by taking into account that the memory is composed
of 8kb blocks, each of which starts at an address that
is divisible by 8192. Any one of these 8kb blocks may
have its first 16-byte block loaded into the ‘cache’’s first
line, its second 16-byte block loaded into the ‘cache’’s
second line, and so on. The number of the 16-byte block

within the 8kb block is the same as the number of the
‘cache’ line, therefore in that scenario, we simply need to
store which 8kb block of memory the bytes in a specific
‘cache’ line correspond to.

references
ACEVEDO, M F A probabdlstic study of two-level storage

hierarchies M S Th, U of Texas, Austin, Tex, Dec 1972.
AVEN, O I, ET AL Some results on distribution-free analysis

of pagmg algorithms IEEE Trans Comptrs C-25, 7 (July
1976), 737-745

BASKETT, F, AND RAFll, A The A0 reversion model of program
pagmg behavior Tech Rep #STAN-CS- 76-579, Dept
Comptr Sci, Stanford U, Stanford, Cahf. Oct 1976

BELADY, L A A study of replacement algorithms for virtual
storage computers IBM Syst J..5. 2 (1960), 78-101

BELL, J, CASASENT, D, AND BELL, C G An mvestlgaUon of
alternative ‘cache’ organizations 1EEE Tram Comptrs.
C-23, 4 (April 1974), 346-35 !

BURVILLE, P J, AND KINGMAN, J F C On a model for storage
and search J Appl Probablhty 10 (1973l, 697-70 !

COFFMAN, E G, AND DENNING, P J Operating System Theory
Prentice-Hall, Englewood Chffs, N J, 1973

